The Connection between Extreme Precipitation Variability over Monsoon Asia and Large-Scale Circulation Patterns
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. APHRODITE Datasets
2.2.1. Rainfall
2.2.2. Temperature
2.3. MAIAC Water Vapor
2.4. Extreme Precipitation Climate Change Indices
2.5. Global Teleconnections and Regional Scale Monsoon Indices
2.6. Study Methods
2.6.1. Trend Analysis
2.6.2. Correlation Analysis
3. Results
3.1. Regional Characteristics of Climate Change Indices
3.2. Teleconnections of Climate Change Indices with Temperature and Total Column Water Vapor
3.3. Global Teleconnections and Climate Change Indices
4. Summary and Conclusions
- The mean spatial variability of precipitation climate change indices reflected the contrasting characteristics of annual mean rainfall over MA. The intense nature of maximum one-day precipitation (R × 1) events and precipitation contributed from extremes, R95 dominantly shows a higher annual mean over coastal regions in MA. Countries within the maritime continent show the maximum number of precipitation events with a magnitude greater than 10 mm (R10).
- Decreasing trends in CDD are reported over arid regions such as the Gobi Desert and Pakistan, Afghanistan, and northwest India. A similar resemblance of decreasing trends in R × 1, R95, CWD, and R10 are observed in countries located around the head Bay of Bengal in the Southeast region. The wet indices (R × 1, R95, and CWD) with observed decreasing trends indicate a drying signal over such regions. On the contrary, the number of consecutive dry days depicts a declining trend over arid regions such as the Gobi Desert, Pakistan, and Afghanistan, which may indicate enhancement in precipitation activity over such regions.
- On comparing areal average tendency in trends, it is observed that recent trends in R × 1 and R95 set an increasing tendency with slopes of 0.3 mm/yr and 0.5 mm/yr. Such positive trending nature in wet indices over coastal regions may impact the frequency the floods over coastal regions.
- The decadal co-variability of extreme precipitation climate change indices is relatively reflected in R95 when compared with other indices. The availability of total column water vapor over different latitudes is closely associated with variability of R95, SDII, and R10 climate change indices, whereas surface temperature seems to play a key role in maximum one-day extreme precipitation (R × 1) variability.
- The prevailing conditions of the SST over the equatorial Pacific Ocean are strongly correlated with the variability of extreme precipitation climate change indices through relative phases of SOI, MEI V2, and Nino 3.4 indices. Extreme precipitation indices such as R95, SDII, CWD, and R10 are strongly correlated with ENSO indices. The combined effect of ENSO and PDO can influence the extreme precipitation variability over MA.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Staudinger, M.D.; Grimm, N.B.; Staudt, A.; Carter, S.L.; Stuart, F.S., III; Kareiva, P.; Ruckelshaus, M.; Stein, B.A. Impacts of Climate Change on Biodiversity, Ecosystems, and Ecosystem Services: Technical Input to the 2013 National Climate Assessment; U.S. Global Change Research Program: Washington, DC, USA, 2012. [Google Scholar]
- Krishnan, R.; Sanjay, J.; Gnanaseelan, C.; Mujumdar, M.; Kulkarni, A.; Chakraborty, S. Assessment of Climate Change over the Indian Region: A Report of the Ministry of Earth Sciences (MOES), Government of India; Springer Nature: Basingstoke, UK, 2020; p. 226. [Google Scholar]
- Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Hegerl, G.C. Changes in temperature and precipitation extremes in the IPCC ensemble of global coupled model simulations. J. Clim. 2007, 20, 1419–1444. [Google Scholar] [CrossRef] [Green Version]
- Kumar, V.; Pradhan, P.K.; Sinha, T.; Rao, S.V.B.; Chang, H.-P. Interaction of a Low-Pressure System, an Offshore Trough, and Mid-Tropospheric Dry Air Intrusion: The Kerala Flood of August 2018. Atmosphere 2020, 11, 740. [Google Scholar] [CrossRef]
- Ratnam, J.; Behera, S.; Ratna, S.; Rajeevan, M.; Yagamata, T. Anatomy of Indian heatwaves. Sci. Rep. 2016, 6, 24395. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Gan, T.Y.; Tan, X. Spatiotemporal changes in precipitation extremes over Canada and their teleconnections to large-scale climate patterns. J. Hydrometeorol. 2019, 20, 275–296. [Google Scholar] [CrossRef]
- Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation; Field, C.B.; Barros, V.; Stocker, T.F.; Dahe, Q. (Eds.) Cambridge University Press: Cambridge, UK, 2012; ISBN 9781139177245. [Google Scholar]
- Sánchez-Benítez, A.; García-Herrera, R.; Vicente-Serrano, S.M. Revisiting precipitation variability, trends and drivers in the Canary Islands. Int. J. Climatol. 2017, 37, 3565–3576. [Google Scholar] [CrossRef]
- Zhu, Z.; Li, T. A new paradigm for continental U.S. summer rainfall variability: Asia-North America teleconnection. J. Clim. 2016, 29, 7313–7327. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, G.; Wang, X.; Cheng, G. Future Changes in Precipitation Extremes Over Canada: Driving Factors and Inherent Mechanism. J. Geophys. Res. Atmos. 2018, 123, 5783–5803. [Google Scholar] [CrossRef]
- Gao, L.; Huang, J.; Chen, X.; Chen, Y.; Liu, M. Contributions of natural climate changes and human activities to the trend of extreme precipitation. Atmos. Res. 2018, 205, 60–69. [Google Scholar] [CrossRef]
- ETCCDI Precipitaion Climate Change Indices. Available online: http://etccdi.pacificclimate.org/list_27_indices.shtml (accessed on 8 November 2021).
- Alexander, L.V.; Arblaster, J.M. Assessing trends in observed and modelled climate extremes over Australia in relation to future projections. Int. J. Climatol. 2009, 29, 417–435. [Google Scholar] [CrossRef]
- Donat, M.G.; Lowry, A.L.; Alexander, L.V.; O’Gorman, P.A.; Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Chang. 2016, 6, 508–513. [Google Scholar] [CrossRef]
- Costa, R.L.; Macedo de Mello Baptista, G.; Gomes, H.B.; dos Santos Silva, F.D.; da Rocha Júnior, R.L.; de Araújo Salvador, M.; Herdies, D.L. Analysis of climate extremes indices over northeast Brazil from 1961 to 2014. Weather Clim. Extrem. 2020, 28, 100254. [Google Scholar] [CrossRef]
- Singh, V.; Qin, X. Study of rainfall variabilities in Southeast Asia using long-term gridded rainfall and its substantiation through global climate indices. J. Hydrol. 2020, 585, 124320. [Google Scholar] [CrossRef]
- Kim, I.-W.; Oh, J.; Woo, S.; Kripalani, R.H. Evaluation of precipitation extremes over the Asian domain: Observation and modelling studies. Clim. Dyn. 2019, 52, 1317–1342. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Hou, X.; Zhao, Y. Changes in consecutive dry/wet days and their relationships with local and remote climate drivers in the coastal area of China. Atmos. Res. 2021, 247, 105138. [Google Scholar] [CrossRef]
- Gupta, V.; Jain, M.K.; Singh, P.K.; Singh, V. An assessment of global satellite-based precipitation datasets in capturing precipitation extremes: A comparison with observed precipitation dataset in India. Int. J. Climatol. 2020, 40, 3667–3688. [Google Scholar] [CrossRef]
- Yu, Y.; Schneider, U.; Yang, S.; Becker, A.; Ren, Z. Evaluating the GPCC Full Data Daily Analysis Version 2018 through ETCCDI indices and comparison with station observations over mainland of China. Theor. Appl. Climatol. 2020, 142, 835–845. [Google Scholar] [CrossRef]
- Kim, Y.H.; Min, S.K.; Zhang, X.; Sillmann, J.; Sandstad, M. Evaluation of the CMIP6 multi-model ensemble for climate extreme indices. Weather Clim. Extrem. 2020, 29, 100269. [Google Scholar] [CrossRef]
- Kumar, S.; Chanda, K.; Pasupuleti, S. Spatiotemporal analysis of extreme indices derived from daily precipitation and temperature for climate change detection over India. Theor. Appl. Climatol. 2020, 140, 343–357. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, Y.; Shen, Y.; Li, B. Tracking climate change in Central Asia through temperature and precipitation extremes. J. Geogr. Sci. 2019, 29, 3–28. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Sun, Y. Characteristics of extreme temperature and precipitation in China in 2017 based on ETCCDI indices. Adv. Clim. Chang. Res. 2018, 9, 218–226. [Google Scholar] [CrossRef]
- Dietzsch, F.; Andersson, A.; Ziese, M.; Schröder, M.; Raykova, K.; Schamm, K.; Becker, A. A global ETCCDI-based precipitation climatology from satellite and rain gauge measurements. Climate 2017, 5, 9. [Google Scholar] [CrossRef] [Green Version]
- Panda, D.K.; Panigrahi, P.; Mohanty, S.; Mohanty, R.K.; Sethi, R.R. The 20th century transitions in basic and extreme monsoon rainfall indices in India: Comparison of the ETCCDI indices. Atmos. Res. 2016, 181, 220–235. [Google Scholar] [CrossRef]
- National Centers for Environmental Information State of the Climate. Global Climate Report for annual 2019. 2019. Available online: https://www.ncdc.noaa.gov/sotc/global/201913 (accessed on 8 November 2021).
- Public Page for Heat and High Impact Weather. Available online: https://public.wmo.int/en/media/press-release/2019-concludes-decade-of-exceptional-global-heat-and-high-impact-weather (accessed on 8 November 2021).
- Loo, Y.Y.; Billa, L.; Singh, A. Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia. Geosci. Front. 2015, 6, 817–823. [Google Scholar] [CrossRef] [Green Version]
- Wentz, F.J.; Ricciardulli, L.; Hilburn, K.; Mears, C. How much more rain will global warming bring? Science 2007, 317, 233–235. [Google Scholar] [CrossRef] [PubMed]
- Sunilkumar, K.; Narayana Rao, T.; Saikranthi, K.; Purnachandra Rao, M. Comprehensive evaluation of multisatellite precipitation estimates over India using gridded rainfall data. J. Geophys. Res. Atmos. 2015, 120, 8987–9005. [Google Scholar] [CrossRef] [Green Version]
- Sunilkumar, K.; Yatagai, A.; Masuda, M. Preliminary Evaluation of GPM-IMERG Rainfall Estimates Over Three Distinct Climate Zones With APHRODITE. Earth Sp. Sci. 2019, 6, 1321–1335. [Google Scholar] [CrossRef] [Green Version]
- Fasullo, J. A mechanism for land-ocean contrasts in global monsoon trends in a warming climate. Clim. Dyn. 2012, 39, 1137–1147. [Google Scholar] [CrossRef]
- Yatagai, A.; Kamiguchi, K.; Arakawa, O.; Hamada, A.; Yasutomi, N.; Kitoh, A. APHRODITE: Constructing a Long-Term Daily Gridded Precipitation Dataset for Asia Based on a Dense Network of Rain Gauges. Bull. Am. Meteorol. Soc. 2012, 93, 1401–1415. [Google Scholar] [CrossRef]
- Ji, X.; Li, Y.; Luo, X.; He, D.; Guo, R.; Wang, J.; Bai, Y.; Yue, C.; Liu, C. Evaluation of bias correction methods for APHRODITE data to improve hydrologic simulation in a large Himalayan basin. Atmos. Res. 2020, 242, 104964. [Google Scholar] [CrossRef]
- Andermann, C.; Bonnet, S.; Gloaguen, R. Evaluation of precipitation data sets along the Himalayan front. Geochem. Geophys. Geosystems 2011, 12. [Google Scholar] [CrossRef] [Green Version]
- Yatagai, A.; Maeda, M.; Khadgarai, S.; Masuda, M.; Xie, P. End of the Day (EOD) Judgment for Daily Rain-Gauge Data. Atmosphere 2020, 11, 772. [Google Scholar] [CrossRef]
- Aphrodite Data Download Page. Available online: http://aphrodite.st.hirosaki-u.ac.jp/download/ (accessed on 8 November 2021).
- Yasutomi, N.; Hamada, A.; Yatagai, A. Development of a Long-term Daily Gridded Temperature Dataset and Its Application to Rain/Snow Discrimination of Daily Precipitation. Glob. Environ. Res. 2011, 15, 165–172. [Google Scholar]
- Vaquero-Martínez, J.; Antón, M.; Ortiz de Galisteo, J.P.; Cachorro, V.E.; Costa, M.J.; Román, R.; Bennouna, Y.S. Validation of MODIS integrated water vapor product against reference GPS data at the Iberian Peninsula. Int. J. Appl. Earth Obs. Geoinf. 2017, 63, 214–221. [Google Scholar] [CrossRef] [Green Version]
- Bright, J.; Gueymard, C.; Killinger, S.; Lingfors, D.; Sun, X.; Wang, P.; Engerer, N. Climatic and Global Validation of Daily MODIS Precipitable Water Data at AERONET Sites for Clear-sky Irradiance Modelling. In Proceedings of the ISES EuroSun 2018 Conference: 12th International Conference on Solar Energy for Buildings and Industry, Rapperswil, Switzerland, 10–13 September 2018. [Google Scholar]
- Shi, F.; Xin, J.; Yang, L.; Cong, Z.; Liu, R.; Ma, Y.; Wang, Y.; Lu, X.; Zhao, L. The first validation of the precipitable water vapor of multisensor satellites over the typical regions in China. Remote Sens. Environ. 2018, 206, 107–122. [Google Scholar] [CrossRef]
- Martins, V.S.; Lyapustin, A.; Wang, Y.; Giles, D.M.; Smirnov, A.; Slutsker, I.; Korkin, S. Global validation of columnar water vapor derived from EOS MODIS-MAIAC algorithm against the ground-based AERONET observations. Atmos. Res. 2019, 225, 181–192. [Google Scholar] [CrossRef] [Green Version]
- Lyapustin, A.; Alexander, M.J.; Ott, L.; Molod, A.; Holben, B.; Susskind, J.; Wang, Y. Observation of mountain lee waves with MODIS NIR column water vapor. Geophys. Res. Lett. 2014, 41, 710–716. [Google Scholar] [CrossRef] [Green Version]
- MODIS MAIAC Water Vapor Download Page. Available online: https://ladsweb.modaps.eosdis.nasa.gov/ (accessed on 8 November 2021).
- Raghavan, K.; Kumar, V.; Sugi, M.; Yoshimura, J. Internal Feedbacks from Monsoon-Midlatitude Interactions during Droughts in the Indian Summer Monsoon. J. Atmos. Sci. 2009, 66, 553–578. [Google Scholar] [CrossRef]
- Monthly Atmospheric and Oceanic Climate Indices. Available online: https://psl.noaa.gov/data/climateindices/list/#Nina34 (accessed on 8 November 2021).
- JAMSTEC Website for Public Datasets. Available online: http://www.jamstec.go.jp/aplinfo/sintexf/e/index.html (accessed on 8 November 2021).
- IRI Website for MJO. Available online: https://iridl.ldeo.columbia.edu/SOURCES/.BoM/.MJO/.RMM/index.html?Set-Language=en (accessed on 8 November 2021).
- Monsoon Monitoring Page for Monthly Datasets. Available online: http://apdrc.soest.hawaii.edu/projects/monsoon/seasonal-monidx.html (accessed on 8 November 2021).
- South Asian Monsoon Indices Download Page. Available online: http://ljp.gcess.cn/dct/page/65544 (accessed on 8 November 2021).
- Kumar, V.; Sunilkumar, K.; Sinha, T. Proportional Trends of Continuous Rainfall in Indian Summer Monsoon. Remote Sens. 2021, 13, 398. [Google Scholar] [CrossRef]
- Sunilkumar, K.; Narayana Rao, T.; Satheeshkumar, S. Assessment of small-scale variability of rainfall and multi-satellite precipitation estimates using measurements from a dense rain gauge network in Southeast India. Hydrol. Earth Syst. Sci. 2016, 20, 1719–1735. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Lau, W.K.-M.; Ramanathan, V.; Wu, G.; Ding, Y.; Manoj, M.G.; Liu, J.; Qian, Y.; Li, J.; Zhou, T.; et al. Aerosol and monsoon climate interactions over Asia. Rev. Geophys. 2016, 54, 866–929. [Google Scholar] [CrossRef]
- Halder, S.; Dirmeyer, P.A. Relation of Eurasian Snow Cover and Indian Summer Monsoon Rainfall: Importance of the Delayed Hydrological Effect. J. Clim. 2017, 30, 1273–1289. [Google Scholar] [CrossRef]
- Liu, S.; Duan, A. Impacts of the leading modes of tropical Indian Ocean sea surface temperature anomaly on sub-seasonal evolution of the circulation and rainfall over East Asia during boreal spring and summer. J. Meteorol. Res. 2017, 31, 171–186. [Google Scholar] [CrossRef]
- Liu, F.; Chai, J.; Wang, B.; Liu, J.; Zhang, X.; Wang, Z. Global monsoon precipitation responses to large volcanic eruptions. Sci. Rep. 2016, 6, 24331. [Google Scholar] [CrossRef] [Green Version]
- Ding, Z.; Lu, R.; Wang, Y. Spatiotemporal variations in extreme precipitation and their potential driving factors in non-monsoon regions of China during 1961–2017. Environ. Res. Lett. 2019, 14, 024005. [Google Scholar] [CrossRef] [Green Version]
- Sardeshmukh, P.D.; Compo, G.P.; Penland, C. Need for Caution in Interpreting Extreme Weather Statistics. J. Clim. 2015, 28, 9166–9187. [Google Scholar] [CrossRef]
- Wang, Z.; Chang, C.-P. A Numerical Study of the Interaction between the Large-Scale Monsoon Circulation and Orographic Precipitation over South and Southeast Asia. J. Clim. 2012, 25, 2440–2455. [Google Scholar] [CrossRef]
- Argüeso, D.; Romero, R.; Homar, V. Precipitation Features of the Maritime Continent in Parameterized and Explicit Convection Models. J. Clim. 2020, 33, 2449–2466. [Google Scholar] [CrossRef]
- Huang, A.; Zhou, Y.; Zhang, Y.; Huang, D.; Zhao, Y.; Wu, H. Changes of the annual precipitation over central Asia in the twenty-first century projected by multimodels of CMIP5. J. Clim. 2014, 27, 6627–6646. [Google Scholar] [CrossRef]
- Miyan, M.A. Droughts in Asian Least Developed Countries: Vulnerability and sustainability. Weather Clim. Extrem. 2015, 7, 8–23. [Google Scholar] [CrossRef] [Green Version]
- Muller, C.; Back, L.; O’Gorman, P.; Emanuel, K. A model for the relationship between tropical precipitation and column water vapor. Geophys. Res. Lett. 2009, 36, 16804. [Google Scholar] [CrossRef]
- Kunkel, K.E.; Karl, T.R.; Squires, M.F.; Yin, X.; Stegall, S.T.; Easterling, D.R. Precipitation Extremes: Trends and Relationships with Average Precipitation and Precipitable Water in the Contiguous United States. J. Appl. Meteorol. Climatol. 2020, 59, 125–142. [Google Scholar] [CrossRef]
- Seo, Y.-W.; Kim, H.; Yun, K.-S.; Lee, J.-Y.; Ha, K.-J.; Moon, J.-Y. Future change of extreme temperature climate indices over East Asia with uncertainties estimation in the CMIP5. Asia-Pac. J. Atmos. Sci. 2014, 50, 609–624. [Google Scholar] [CrossRef]
- Bollasina, M.A.; Messori, G. On the link between the subseasonal evolution of the North Atlantic Oscillation and East Asian climate. Clim. Dyn. 2018, 51, 3537–3557. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Feng, J.; Wu, R. Roles of ENSO and PDO in the Link of the East Asian Winter Monsoon to the following Summer Monsoon. J. Clim. 2013, 26, 622–635. [Google Scholar] [CrossRef]
- Krishnamurthy, L.; Krishnamurthy, V. Influence of PDO on South Asian summer monsoon and monsoon–ENSO relation. Clim. Dyn. 2014, 42, 2397–2410. [Google Scholar] [CrossRef]
Details of Estimation Methodology of Precipitation Climate Change Indices and Units |
---|
Rx1day: Monthly maximum 1-day precipitation: Let RRij be the daily precipitation amount on day i in period j. The maximum 1-day value for period j are: Rx1dayj = max (RRij), units = mm. |
Rx5day: Monthly maximum consecutive 5-day precipitation: Let RRkj be the precipitation amount for the 5-day interval ending k, period j. Then maximum 5-day values for period j are: Rx5dayj = max (RRkj), units = mm. |
SDII: Simple precipitation intensity index: Let RRwj be the daily precipitation amount on wet days, w (RR ≥ 1 mm) in period j. If W represents the number of wet days in j, then: , units = mm/day. |
R10mm: Annual count of days when PRCP ≥ 10 mm: Let RRij be the daily precipitation amount on day i in period j. Count the number of days where: RRij ≥ 10 mm. units = days. |
CDD: Maximum length of dry spell, maximum number of consecutive days with RR < 1 mm: Let RRij be the daily precipitation amount on day i in period j. Count the largest number of consecutive days where: RRij < 1 mm units = days. |
CWD: Maximum length of wet spell, maximum number of consecutive days with RR ≥ 1 mm: Let RRij be the daily precipitation amount on day i in period j. Count the largest number of consecutive days where: RRij ≥ 1 mm units = days. |
R95pTOT: Annual total PRCP when RR > 95p. Let RRwj be the daily precipitation amount on a wet day w (RR ≥ 1.0 mm) in period i and let RRwn95 be the 95th percentile of precipitation on wet days in the 1961–1990 period. If W represents the number of wet days in the period, then: where RRwj > RRwn95. Units = mm. |
CDD | CWD | R × 1 | R10 | R × 5 | R95 | SDII | |
---|---|---|---|---|---|---|---|
CDD | 1 | ||||||
CWD | −0.3 | 1 | |||||
R × 1 | −0.22 | 0.1 | 1 | ||||
R10 | −0.44 * | 0.83 ** | 0.18 | 1 | |||
R × 5 | 0.26 | −0.07 | 0.006 | −0.16 | 1 | ||
R95 | −0.45 * | 0.72 ** | 0.54 ** | 0.89 ** | −0.18 | 1 | |
SDII | −0.4 | 0.46 * | 0.76 ** | 0.53 * | −0.03 | 0.74 ** | 1 |
CDD | CWD | R × 1 | R10 | R × 5 | R95 | SDII | |
---|---|---|---|---|---|---|---|
DMI | −0.18 | 0.22 | 0.37 | 0.28 | −0.18 | 0.25 | 0.33 |
EASMI | 0.45 * | −0.11 | −0.09 | −0.19 | 0.04 | −0.28 | −0.46 * |
EMI | 0.18 | −0.44 | −0.11 | −0.51 * | −0.32 | −0.52 * | −0.20 |
GMLOT | −0.32 | −0.29 | 0.23 | −0.47 * | −0.05 | −0.27 | 0.17 |
MEV2 | 0.10 | −0.58 * | −0.44 | −0.80 ** | −0.01 | −0.87 ** | −0.59 ** |
MJO_AMP | 0.14 | −0.18 | −0.09 | −0.24 | −0.49 * | −0.33 | −0.43 |
NAO | 0.45 * | −0.29 | 0.10 | −0.15 | −0.04 | −0.06 | −0.02 |
NINO 3.4 | 0.02 | −0.38 * | −0.28 | −0.68 ** | −0.14 | −0.72 ** | −0.40 |
PDO | 0.19 | −0.48 * | −0.37 | −0.69 ** | 0.01 | −0.75 ** | −0.46 * |
SOI | −0.32 | 0.65 ** | 0.37 | 0.86 ** | −0.09 | 0.91 ** | 0.62 ** |
WYMI | 0.44 | −0.19 | −0.43 | 0.04 | 0.14 | −0.08 | −0.55 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khadgarai, S.; Kumar, V.; Pradhan, P.K. The Connection between Extreme Precipitation Variability over Monsoon Asia and Large-Scale Circulation Patterns. Atmosphere 2021, 12, 1492. https://doi.org/10.3390/atmos12111492
Khadgarai S, Kumar V, Pradhan PK. The Connection between Extreme Precipitation Variability over Monsoon Asia and Large-Scale Circulation Patterns. Atmosphere. 2021; 12(11):1492. https://doi.org/10.3390/atmos12111492
Chicago/Turabian StyleKhadgarai, Sunilkumar, Vinay Kumar, and Prabodha Kumar Pradhan. 2021. "The Connection between Extreme Precipitation Variability over Monsoon Asia and Large-Scale Circulation Patterns" Atmosphere 12, no. 11: 1492. https://doi.org/10.3390/atmos12111492
APA StyleKhadgarai, S., Kumar, V., & Pradhan, P. K. (2021). The Connection between Extreme Precipitation Variability over Monsoon Asia and Large-Scale Circulation Patterns. Atmosphere, 12(11), 1492. https://doi.org/10.3390/atmos12111492