Size-Segregated Elemental Profile and Associated Heath Risk Assessment of Road Dust along Major Traffic Corridors in Kolkata Mega City
Abstract
:1. Introduction
2. Materials and Methods
2.1. Background of the Study Area and Road Dust Sampling
2.2. Particle Size Distribution Analysis
2.3. Analysis of Elements
2.4. Assessment of Elemental Pollution by Enrichment Factor and Other Indices
2.5. Human Health Risk Assessment
Cancer and Non-Cancer Risk Assessment
2.6. Statistical Analyses
3. Results and Discussion
3.1. Physical Attributes of Road Dust
3.2. Elemental Concentration in Road Dust
3.3. Assessment of Elemental Pollution
3.4. Health Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhao, H.; Li, X.; Wang, X.; Tian, D. Grain size distribution of road-deposited sediment and its contribution to heavy metal pollution in urban run-off in Beijing, China. J. Hazard. Mater. 2010, 183, 203–210. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, D.; Rajaram, B.; Meshram, S.; Rao, C.V.C. PAHs in Road Dust: Ubiquity, Fate, and Summary of Available Data. Crit. Rev. Environ. Sci. Technol. 2012, 42, 1191–1232. [Google Scholar] [CrossRef]
- Kreider, M.L.; Panko, J.M.; McAtee, B.L.; Sweet, L.I.; Finley, B.L. Physical and chemical characterization of tyre-related particles: Comparison of particles generated using different methodologies. Sci. Total Environ. 2010, 408, 652–659. [Google Scholar] [CrossRef] [PubMed]
- Suryawanshi, P.V.; Rajaram, B.S.; Bhanarkar, A.D.; Rao, C.V.C. Determining heavy metal contamination of road dust in Delhi, India. Atmósfera 2016, 29, 221–234. [Google Scholar] [CrossRef] [Green Version]
- Jendritzki, G.; Grätz, A. Das Bioklima des Menschen in der Stadt. In Stadtklima und Luftreinhaltung; Helbig, A., Baumüller, J., Kerschgens, M.J., Eds.; VDI-Buch, Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar] [CrossRef]
- Countess, R.; Barnard, W.; Claiborn, C.; Gillette, D.; Latimer, D.; Pace, T.; Watson, J. Methodology for Estimating Fugitive Windblown and Mechanically Resuspended Road Dust Emissions Applicable for Regional Air Quality Modeling. 2001. Available online: http://www.epa.gov/ttn/chief/conference/ei10/fugdust/countess.pdf (accessed on 2 March 2021).
- Martuzevicius, D.; Kliucininkas, L.; Prasauskas, T.; Krugly, E.; Kauneliene, V.; Strandberg, B. Resuspension of particulate matter and PAHs from street dust. Atmos. Environ. 2011, 45, 310–317. [Google Scholar] [CrossRef]
- Ghosh, M.K. An Analysis of Roadside Dust Fall in Bhilai-3 of Durg District Chhattisgarh, Central India and its Impact on Human Health. Int. J. Res. Environ. Sci. Technol. 2014, 4, 54–60. [Google Scholar]
- Shah, J.; Nagpal, T. Urban Air Quality Management Strategy in Asia URBAIR: Greater Mumbai Report; World Bank: Washington, DC, USA, 1996. [Google Scholar]
- Amato, F.; Pandolfi, M.; Escrig, A.; Querol, X.; Alastuey, A.; Pey, J.; Perez, N.; Hopke, P.K. Quantifying road dust resuspension in urban environment by multilinear engine: A comparison with PMF2. Atmos. Environ. 2009, 43, 2770–2780. [Google Scholar] [CrossRef]
- Han, L.H.; Zhuang, G.; Cheng, S.; Wang, Y.; Li, J. Characteristics of resuspended road dust and its impact on the atmospheric environment in Beijing. Atmos. Environ. 2007, 41, 7485–7499. [Google Scholar] [CrossRef]
- Sai Bhaskar, V.; Sharma, M. Assessment of fugitive road dust emissions in Kanpur, India: A note. Transp. Res. Part D Transp. Environ. 2008, 13, 400–403. [Google Scholar] [CrossRef]
- Bian, B.; Zhu, W. Particle size distribution and pollutants in road-deposited sediments in different areas of Zhenjiang, China. Environ. Geochem. Health 2009, 31, 511–520. [Google Scholar] [CrossRef]
- Zhao, H.; Yin, C.; Chen, M.; Wang, W. Risk assessment of heavy metals in street dust particles to a stream network. Soil Sediment Contam. 2009, 18, 173–183. [Google Scholar] [CrossRef]
- Zafra, C.A.; Temprano, J.; Tejero, I. Distribution of the concentration of heavy metals associated with the sediment particles accumulated on road surfaces. Environ. Technol. 2011, 32, 997–1008. [Google Scholar] [CrossRef] [PubMed]
- Vaze, J.; Chiew, H.S. Experimental study pollutant accumulation on an urban road surface. Urban Water 2002, 4, 379–389. [Google Scholar] [CrossRef]
- Zhao, H.; Yin, C.; Chen, M.; Wang, W. Run-off pollution impacts of polycyclic aromatic hydrocarbons in street dusts from a stream network town. Water Sci. Technol. 2008, 58, 2069–2076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andral, M.C.; Roger, S.; Montrejaud-Vignoles, M.; Herremans, L. Particle size distribution and hydrodynamic characteristics of solid matter carried by run-off from motorways. Water Environ. Res. 1999, 71, 398–407. [Google Scholar] [CrossRef]
- German, J.; Svensson, G. Metal content and particle size distribution of street sediments and street sweeping waste. Water Sci. Technol. 2002, 46, 191–198. [Google Scholar] [CrossRef]
- Kioumourtzoglou, M.A.; Coull, B.A.; Dominici, F.; Koutrakis, P.; Schwartz, J.; Suh, H. The impact of source contribution uncertainty on the effects of source-specific PM2.5 on hospital admissions: A case study in Boston, MA. J. Expo. Sci. Environ. Epidemiol. 2014, 24, 365–371. [Google Scholar] [CrossRef] [Green Version]
- Bell, M.L.; Ebisu, K.; Leaderer, B.P.; Gent, J.F.; Lee, H.J.; Koutrakis, P.; Wang, Y.; Dominici, F.; Peng, R.D. Associations of PM2.5 constituents and sources with hospital admissions: Analysis of four counties in Connecticut and Massachusetts (USA) for persons ≥65 years of age. Environ. Health Perspect. 2014, 122, 138–144. [Google Scholar] [CrossRef] [Green Version]
- Kolkata Municipal Corporation. Basic statistics of Koltata Municipal Corporation. Available online: https://www.kmcgov.in/KMCPortal/jsp/BasicStatistics.jsp (accessed on 2 March 2021).
- Chenery, S.R.N.; Sarkar, S.K.; Chatterjee, M.; Marriott, A.L.; Watts, M.J. Heavy metals in urban road dusts from Kolkata and Bengaluru, India: Implications for human health. Environ. Geochem. Health 2020, 42, 2627–2643. [Google Scholar] [CrossRef] [PubMed]
- ADB. Air Quality Management. In Strengthening Environmental Management at the State Level (Cluster): Component E—Strengthening Environmental Management at West Bengal Pollution Control Board (ADB TA 3423—IND); Final Report; Intercontinental Consultants and Technocrats Pvt. Ltd.: New Delhi, India; Ballofet International LLC: Fort Collins, CO, USA; Water & Power Consultancy Services (India) Ltd.: New Delhi, India, November 2005; Volume V. [Google Scholar]
- Majumdar, D.; Purohit, P.; Bhanarkar, A.D.; Rao, P.S.; Rafaj, P.; Amann, M.; Sander, R.; Pakrashi, A.; Srivastava, A. Managing future air quality in megacities: Emission inventory and scenario analysis for the Kolkata Metropolitan City, India. Atmos. Environ. 2020, 222, 117135. [Google Scholar] [CrossRef]
- Majumdar, D. How are the Two Most Polluted Metro-cities of India Combating Air Pollution? Way Forward after Lifting of COVID-19 Lockdown. Aerosol Air Qual. Res. 2021, 21, 200463. [Google Scholar] [CrossRef]
- West Bengal Pollution Control Board. Air Action Plan. Available online: https://www.wbpcb.gov.in/air-action-plan (accessed on 2 March 2021).
- Roy Chowdhury, I. Scenario of vehicular emissions and its effect on human health in Kolkata city. Int. J. Humanit. Soc. Sci. Invent. 2015, 4, 1–9. [Google Scholar]
- Lanzerstorfer, C. Toward more intercomparable road dust studies. Crit. Rev. Environ. Sci. Technol. 2020, 51, 826–855. [Google Scholar] [CrossRef] [Green Version]
- Charlesworth, S.; De Miguel, E.; Ordóñez, A. A review of the distribution of particulate trace elements in urban terrestrial environments and its application to considerations of risk. Environ. Geochem. Health 2011, 33, 103–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, N.J.; Hinds, W.C. Inhalability of large solid particles. J. Aerosol Sci. 2002, 33, 237–255. [Google Scholar] [CrossRef]
- Li, H.; Zuo, X.J. Speciation and Size Distribution of Copper and Zinc in Urban Road Runoff. Bull. Environ. Contam. Toxicol. 2013, 90, 471–476. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Li, X. Risk assessment of metals in road-deposited sediment along an urban–rural gradient. Environ. Pollut. 2013, 174, 297–304. [Google Scholar] [CrossRef]
- Yuen, J.Q.; Olin, P.H.; Lim, H.S.; Benner, S.G.; Sutherland, R.A.; Ziegler, A.D. Accumulation of potentiallytoxic elements in road deposited sediments in residential and light industrialneighborhoods of Singapore. J. Environ. Manag. 2012, 101, 151–163. [Google Scholar] [CrossRef]
- Taylor, S.R. Abundance of chemical elements in the continental crust: A new table. Geochim. Cosmochim. Acta 1964, 28, 1273–1285. [Google Scholar] [CrossRef]
- Belhadj, H.; Aubert, D.; Dali Youcef, N. Geochemistry of major and trace elements in sediments of Ghazaouet Bay (western Algeria): An assessment of metal pollution. C. R. Geosci. 2017, 349, 412–421. [Google Scholar] [CrossRef]
- Daskalakis, K.D.; O’Connor, T.P. Normalization and elemental sediment contamination in the Coastal United States. Environ. Sci. Technol. 1995, 29, 470–477. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, R.A.; Tolosa, C.A. Multi-element analysis of road-deposited sediment in an urban drainage basin, Honolulu, Hawaii. Environ. Pollut. 2000, 110, 483–495. [Google Scholar] [CrossRef]
- Ogundele, L.T.; Owoade, O.K.; Hopke, P.K.; Olise, F.S. Heavy metals in industrially emitted particulate matter in Ile-Ife, Nigeria. Environ. Res. 2017, 156, 320–325. [Google Scholar] [CrossRef]
- Islam, M.S.; Ahmed, M.K.; Raknuzzaman, M.; Habibullah-Al-Mamun, M.; Islam, M.K. Heavy metal pollution in surface water and sediment: A preliminary assessment of an urban river in a developing country. Ecol. Indic. 2015, 48, 282–291. [Google Scholar] [CrossRef]
- Devanesan, E.; Suresh, G.M.; Selvapandiyan, M.; Senthilkumar, G.; Ravisankar, R. Heavy metal and potential ecological risk assessmentin sediments collected from Poombuhar to Karaikal coast of Tamil Nadu using energy dispersive X-ray fluorescence (EDXRF) technique. Beni-Suef Univ. J. Basic Appl. Sci. 2017, 6, 285–292. [Google Scholar] [CrossRef]
- Hakanson, L. An ecological risk index for aquatic pollutioncontrol. A sedimentological approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Lu, X.; Wu, X.; Wang, Y.; Chen, H.; Gao, P.; Fu, Y. Risk assessment of toxic metals in street dust from a medium-sized industrial city of China. Ecotoxicol. Environ. Saf. 2014, 106, 154–163. [Google Scholar] [CrossRef]
- Ogunkunle, C.O.; Fatoba, P.O. Pollution loads and the ecological risk assessment of soil heavy metals around a mega cement factory in Southwest Nigeria. Pol. J. Environ. Stud. 2013, 22, 487–493. [Google Scholar]
- Sun, Y.; Zhou, Q.; Xie, Q.; Liu, R. Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. J. Hazard. Mater. 2010, 174, 455–462. [Google Scholar] [CrossRef] [PubMed]
- USEPA. Risk-Assessment Guidance for Superfund. Volume 1. Human Health Evaluation Manual. Part A. Interim Final. USEPA. 1989. Available online: https://www.lm.doe.gov/cercla/documents/fernald_docs/CAT/215579.pdf (accessed on 5 March 2021).
- Van den Berg, R. Human Exposure to Soil Contamination: A Qualitative Analysis towards Proposals for Humane Toxicological Intervention Values; National Institute of Public Health and Environmental Protection: Bilthoven, The Netherlands, 1994. [Google Scholar]
- Oomen, A.G.; Janssen, P.; Dusseldorp, A.; Noorlander, C.W. Exposure to Chemicals via House Dust; No. RIVM Report 609021064/2008; RIVM: Bilthoven, The Netherlands, 2008.
- ICMR. Development of an Atlas of Cancer in India, a Project of National Cancer Registry Programme. Available online: https://www.ncdirindia.org/ncrp/ca/index.aspx (accessed on 16 August 2021).
- Gope, M.; Masto, R.E.; George, J.; Balachandran, S. Tracing source, distribution and health risk of potentially harmful elements (PHEs) in street dust of Durgapur, India. Ecotoxicol. Environ. Saf. 2018, 154, 280–293. [Google Scholar] [CrossRef]
- Najmeddin, A.; Moore, F.; Keshavarzi, B.; Sadegh, Z. Pollution, source apportionment and health risk of potentially toxic elements (PTEs) and polycyclic aromatic hydrocarbons (PAHs) in urban street dust of Mashhad, the second largest city of Iran. J. Geochem. Explor. 2018, 190, 154–169. [Google Scholar] [CrossRef]
- Praveena, S.M.; Aris, A.Z. Status, source identification, and health risks of potentially toxic element concentrations in road dust in a medium-sized city in a developing country. Environ. Geochem. Health 2018, 40, 749–762. [Google Scholar] [CrossRef]
- Jose, J.; Srimuruganandam, B. Investigation of road dust characteristics and its associated health risks from an urban environment. Environ. Geochem. Health 2020, 42, 2819–2840. [Google Scholar] [CrossRef]
- RAIS (The Risk Assessment Information System). Chemical Toxicity Value. 2020. Available online: https://rais.ornl.gov/tools/rais_chemical_risk_guide.html (accessed on 5 March 2021).
- USDA. Soil Mechanics Level—I, Module 3—USDA Textural Soil Classification, Study Guide, USDA, USA. 1987. Available online: https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1044818.pdf (accessed on 2 March 2021).
- WHO/SDE/OEH/99.14 Document. Available online: http://www.who.int/occupational_health/publications/en/oehairbornedust3.pdf (accessed on 18 February 2021).
- Ball, J.E.; Jenks, R.; Aubourg, D. An assessment of the availability of pollutant constituents on road surfaces. Sci. Total Environ. 1998, 209, 243–254. [Google Scholar] [CrossRef]
- Ellis, J.B.; Revitt, D.M. Incidence of heavy metals in street surface sediments: Solubility and grain size studies. Water Air Soil Pollut. 1982, 17, 87–100. [Google Scholar] [CrossRef]
- Yang, S.; Zhang, H.; Ding, H.; He, P.; Zhou, H. Lithium Metal Extraction from Seawater. Joule 2018, 2, 1648–1651. [Google Scholar] [CrossRef] [Green Version]
- Central Pollution Control Board, Delhi, India. 2009. Available online: https://cpcb.nic.in/uploads/National_Ambient_Air_Quality_Standards.pdf (accessed on 2 March 2021).
- Chatterjee, A.; Banerjee, R.N. Determination of lead and other metals in a residential area of greater Calcutta. Sci. Total Environ. 1999, 227, 175–185. [Google Scholar] [CrossRef]
- Kuhad, M.S.; Malik, R.S.; Singh, A.; Dahiya, I.S. Background levels of heavy metals in agricultural soils of Indo Gangetic plains of Haryana. J. Indian Soc. Soil Sci. 1989, 3, 700–705. [Google Scholar]
- Gowd, S.; Reddy, S.; Govil, P.K. Assessment of heavy metal contamination in soils at Jajmau (Kanpur) and Unnao industrial areas of the Ganga Plain, Uttar Pradesh, India. J. Hazard. Mater. 2010, 174, 113–121. [Google Scholar] [CrossRef]
- Jiang, Y.; Shi, L.; Guang, A.L.; Mu, Z.; Zhan, H.; Wu, Y. Contamination levels and human health risk assessment of toxic heavy metals in street dust in an industrial city in Northwest China. Environ. Geochem. Health 2017, 40, 2007–2020. [Google Scholar] [CrossRef]
- Census of India. 2011. Kolkata City Population 2011–2021. Available online: https://www.census2011.co.in/census/city/215-kolkata.html (accessed on 2 March 2021).
- Kolkata Municipal Corporation. Solid waste Management Department. Available online: https://www.kmcgov.in/KMCPortal/jsp/SolidWasteFAQs.jsp (accessed on 2 March 2021).
Site Name | Site Coordinates | Details |
---|---|---|
Commercial Area | ||
Alipore | 88.3363° N 22.5268° E | Semi-congested area; Asphalt Road; Court and Urban Local Body office nearby, a bus stop and a petrol pump are nearby |
Residential Area | ||
Jadavpur | 88.3707° N 22.4940° E | Asphalt Road; Low vehicular load; Railway station is within 500 m; A flyover is just adjacent; Local market is nearby |
Picnic Garden | 88.3884° N 22.5266° E | Semi-congested; Dotted by residences and small roads; Low vehicular road; Busy traffic square is nearby |
Traffic Area | ||
College Street | 88.36408° N 22.5774° E | Congested Area; Asphalt Road; High vehicular traffic; Presidency College and College Square are nearby |
Ruby Square | 88.4029° N 22.5135° E | Congested area; Asphalt Road; Heavy construction activity; Very high vehicular traffic; Gateway Hotel, a petrol pump are nearby; Small roadside food stalls that use biomass cookstoves |
Ultadanga | 88.3402° N 22.5927° E | Asphalt Road; Very high vehicular traffic; Circular rail station is nearby |
Traffic + Commercial Area | ||
Rabindra Sadan | 88.3451° N 22.5433° E | Wide Asphalt Road; Heavy vehicular traffic; Cinema Hall and Childrens’ Museum are nearby |
Hazra | 88.34706° N 22.52372° E | Congested Area; Asphalt Road; Heavy vehicular traffic; Cancer Hospital, College and a big Park are nearby |
Esplanade | 88.3504° N 22.5647° E | Wide asphalt road; Heavy vehicular traffic; Mosque, a metro station, Income Tax Office, etc. are nearby; Large stores are also there in the vicinity |
Shyambazar | 88.3731° N 22.6006° E | Congested area; Asphalt Road; Very high vehicular traffic; Metro station is nearby; High commercial activity and surrounded by food stalls |
Khidirpur | 88.3268° N 22.5404° E | Congested Area; Asphalt Road; Traffic load is high; Commercial area, a bridge and a large market, etc. are nearby |
Parameter | Unit | Abbreviat-Ion | Assumptions for Health Risk Assessment |
---|---|---|---|
Ingestion Exposure | - | EIg | - |
Inhalation Exposure | - | EIh | - |
Dermatological Exposure | - | EDm | - |
Observed concentration of element ‘I’ in road dust | - | Ci | - |
Ingestion Rate | mg day−1 | RIg | Adult: 100; Children: 200 |
Inhalation rate | m3 day−1 | RIh | 20 |
Frequency of exposure | Days year−1 | Fexp | 365 |
Exposure duration | Years | ED | Adult: 24; Children: 6 |
Average body weight | Kg | BWavg | Adult: 60 kg; Children: 18 kg |
Averaging time | Days | Tavg | (ED × Fexp) |
Particle Emission Factor | m3 kg−1 | EFP | 1.36 × 109 |
skin adherence factor | mg cm−2 | SAF | Adult: 0.07; Children: 0.2 |
dermal absorption factor | - | AFDm | 0.001 |
Area of skin | cm−2 | Askin | Adult: 5700; Children: 2800 |
Carcinogenic Slope Factor of element ‘I’ | (mg kg−1 day−1)−1 | SFi | * |
reference dose for chronic exposure of element ‘i’ | (mg kg−1 day−1) | RfDi | * |
Parameter | Cd | Cr | Co | Pb | Mn | Ni | Sr | Zn | Fe | Mg | Li | Ti | Cu | Ba |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
<28 µm | 2.68 | 71.27 | 9.11 | 3.53 | 402.19 | 38.85 | 66.32 | 297.16 | 14,736.23 | 8102.92 | 433.91 | 475.50 | 55.66 | 305.29 |
SD | 0.47 | 17.49 | 0.72 | 0.63 | 66.02 | 7.89 | 4.45 | 45.02 | 3543.82 | 1304.46 | 20.32 | 76.35 | 44.34 | 78.11 |
CV (%) | 17.62 | 24.54 | 7.85 | 17.74 | 16.42 | 20.30 | 6.71 | 15.15 | 24.05 | 16.10 | 4.68 | 16.06 | 79.65 | 25.59 |
>28–<45 µm | 2.14 | 52.62 | 7.40 | 2.78 | 343.83 | 26.45 | 49.54 | 235.03 | 13,935.24 | 7380.53 | 452.82 | 420.64 | 38.63 | 225.50 |
SD | 1.09 | 33.88 | 1.05 | 1.23 | 107.70 | 12.61 | 5.21 | 73.91 | 6170.33 | 1396.06 | 15.83 | 59.27 | 70.12 | 90.84 |
CV (%) | 50.88 | 64.39 | 14.20 | 44.42 | 31.32 | 47.68 | 10.52 | 31.45 | 44.28 | 18.92 | 3.50 | 14.09 | 181.50 | 40.28 |
45–<63 µm | 2.24 | 58.05 | 9.59 | 2.91 | 343.22 | 40.39 | 43.62 | 260.43 | 15,111.55 | 7572.23 | 468.99 | 375.60 | 63.00 | 341.24 |
SD | 0.65 | 33.76 | 1.42 | 0.88 | 99.34 | 13.85 | 6.49 | 64.95 | 6404.68 | 1545.65 | 13.01 | 80.23 | 54.95 | 86.33 |
CV (%) | 29.23 | 58.16 | 14.78 | 30.22 | 28.95 | 34.28 | 14.87 | 24.94 | 42.38 | 20.41 | 2.77 | 21.36 | 87.23 | 25.30 |
63–<106 µm | 1.45 | 30.21 | 3.47 | 1.74 | 237.62 | 15.37 | 11.89 | 94.82 | 10,965.18 | 2749.98 | 502.46 | 188.52 | 11.08 | 66.87 |
SD | 0.70 | 17.71 | 1.68 | 0.86 | 93.94 | 12.16 | 11.94 | 71.02 | 5192.17 | 2406.81 | 14.08 | 74.65 | 41.09 | 57.35 |
CV (%) | 48.43 | 58.62 | 48.51 | 49.51 | 39.53 | 79.12 | 100.43 | 74.90 | 47.35 | 87.52 | 2.80 | 39.60 | 370.88 | 85.77 |
Metals | Cdeg | |||
---|---|---|---|---|
<28 | 28–43 | 43–63 | 63–106 | |
Cd | 108.51 | 109.01 | 107.08 | 83.93 |
Cr | 6.61 | 6.01 | 6.46 | 3.23 |
Co | 3.21 | 2.76 | 2.99 | 1.82 |
Pb | 2.37 | 2.19 | 2.30 | 1.73 |
Mn | 3.50 | 3.23 | 3.33 | 2.22 |
Ni | 5.03 | 4.46 | 4.17 | 3.48 |
Sr | 1.26 | 1.00 | 0.99 | 0.71 |
Zn | 33.54 | 30.16 | 29.28 | 18.23 |
Fe | 2.45 | 2.45 | 2.68 | 1.90 |
Mg | 2.78 | 2.64 | 2.75 | 2.02 |
Mn | 2.30 | 2.24 | 2.26 | 1.31 |
Li | 175.37 | 181.10 | 209.19 | 243.59 |
Ti | 0.66 | 0.61 | 0.64 | 0.33 |
Cu | 11.55 | 11.29 | 10.26 | 5.62 |
Ba | 6.80 | 5.41 | 6.00 | 3.41 |
Metal | Ecological Risk * in Particulate Size Range | |||
---|---|---|---|---|
<28 | 28–45 | 45–63 | 63–106 | |
Cu | 57.75 | 56.44 | 51.31 | 28.09 |
Pb | 11.86 | 10.95 | 11.51 | 8.63 |
Cr | 13.22 | 12.01 | 12.92 | 6.47 |
Ni | 25.14 | 22.31 | 20.83 | 17.41 |
Cd | 3255.15 | 3270.19 | 3212.35 | 2518.02 |
Zn | 33.54 | 30.16 | 29.28 | 18.23 |
Parameter | Exposure Type | Cd | Cr | Co | Pb | Mn | Ni | Sr | Zn | Fe | Li | Cu | Ba |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RfD (mg kg−1 day−1) | Ingestion | 1.0 × 10−3 | 3.0 × 10−3 | 3.0 × 10−4 | 3.5 × 10−3 | 1.4 × 10−1 | 2.0 × 10−2 | 6.0 × 10−1 | 3.0 × 10−1 | 7.0 × 10−1 | 2.0 × 10−3 | 4.0 × 10−2 | 2.0 × 10−1 |
Inhalation | - | 2.8 × 10−5 | 6.0 × 10−6 | 3.5 × 10−3 | 5.0 × 10−5 | 2.6 × 10−2 | - | 3.0 × 10−1 | 7.0 × 10−2 | - | 4.2 × 10−2 | - | |
Dermal | - | 7.0 × 10−5 | - | 5.2 × 10−4 | 1.8 × 10−3 | 5.4 × 10−3 | - | 6.0 × 10−2 | 2.2 × 10−3 | - | 1.2 × 10−2 | - | |
SF (mg kg−1 day−1)−1 | 1.5 × 101 | 4.2 × 10−1 | - | 8.5 × 10−3 | - | 9.1 × 10−1 | - | - | - | - | - | - | |
HQ (Ingestion) | Adult | 4.1 × 10−3 | 3.6 × 10−2 | 4.5 × 10−2 | 1.5 × 10−3 | 4.3 × 10−3 | 3.0 × 10−3 | 1.2 × 10−4 | 1.3 × 10−3 | 3.8 × 10−2 | 3.8 × 10−1 | 2.8 × 10−3 | 2.3 × 10−3 |
Children | 2.7 × 10−2 | 2.4 × 10−1 | 3.0 × 10−1 | 1.0 × 10−2 | 2.8 × 10−2 | 2.0 × 10−2 | 8.2 × 10−4 | 8.9 × 10−3 | 2.6 × 10−1 | 2.6 | 1.9 × 10−2 | 1.5 × 10−2 | |
HQ (Inhalation) | Adult | - | 5.7 × 10−4 | 3.3 × 10−4 | 2.3 × 10−7 | 1.8 × 10−3 | 3.4 × 10−7 | - | 2.0 × 10−7 | 5.6 × 10−5 | - | 4.0 × 10−7 | - |
Children | - | 1.9 × 10−3 | 1.1 × 10−3 | 7.5 × 10−7 | 5.9 × 10−3 | 1.1 × 10−6 | - | 6.5 × 10−7 | 1.9 × 10−4 | - | 1.3 × 10−6 | - | |
HQ (Dermal) | Adult | - | 6.2 × 10−3 | - | 4.1 × 10−5 | 1.3 × 10−3 | 4.5 × 10−5 | - | 2.7 × 10−5 | 4.9 × 10−2 | - | 3.8 × 10−5 | - |
Children | - | 2.9 × 10−2 | - | 1.9 × 10−4 | 6.2 × 10−3 | 2.1 × 10−4 | - | 1.2 × 10−4 | 2.3 × 10−1 | - | 1.8 × 10−4 | - | |
HI | Adult | 4.1 × 10−3 | 4.3 × 10−2 | 4.5 × 10−2 | 1.6 × 10−3 | 7.3 × 10−3 | 3.1 × 10−3 | 1.2 × 10−4 | 1.4 × 10−3 | 8.7 × 10−2 | 3.8 × 10−1 | 2.9 × 10−3 | 2.3 × 10−3 |
Children | 2.7 × 10−2 | 2.7 × 10−1 | 3.0 × 10−1 | 1.0 × 10−2 | 4.0 × 10−2 | 2.0 × 10−2 | 8.2 × 10−4 | 9.0 × 10−3 | 4.8 × 10−1 | 2.6 | 1.9 × 10−2 | 1.5 × 10−2 | |
CR (oral) (10−6 population) | Adult | 6.1 × 101 | 4.6 × 101 | - | 4.6 × 10−2 | - | 5.5 × 101 | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majumdar, D.; Biswas, B.; Majumdar, D.; Ray, R. Size-Segregated Elemental Profile and Associated Heath Risk Assessment of Road Dust along Major Traffic Corridors in Kolkata Mega City. Atmosphere 2021, 12, 1677. https://doi.org/10.3390/atmos12121677
Majumdar D, Biswas B, Majumdar D, Ray R. Size-Segregated Elemental Profile and Associated Heath Risk Assessment of Road Dust along Major Traffic Corridors in Kolkata Mega City. Atmosphere. 2021; 12(12):1677. https://doi.org/10.3390/atmos12121677
Chicago/Turabian StyleMajumdar, Deepanjan, Bratisha Biswas, Dipanjali Majumdar, and Rupam Ray. 2021. "Size-Segregated Elemental Profile and Associated Heath Risk Assessment of Road Dust along Major Traffic Corridors in Kolkata Mega City" Atmosphere 12, no. 12: 1677. https://doi.org/10.3390/atmos12121677
APA StyleMajumdar, D., Biswas, B., Majumdar, D., & Ray, R. (2021). Size-Segregated Elemental Profile and Associated Heath Risk Assessment of Road Dust along Major Traffic Corridors in Kolkata Mega City. Atmosphere, 12(12), 1677. https://doi.org/10.3390/atmos12121677