Water-Soluble Ions in Atmospheric Aerosol Measured in a Semi-Arid and Chemical-Industrialized City, Northwest China
Abstract
:1. Introduction
2. Experimental Site and Methodology
2.1. Sampling Site Description
2.2. Chemical Collection and Analysis
2.3. Data Resource
2.4. Calculation of SOR and NOR
2.5. HYSPLIT Model Analysis
3. Results and Discussion
3.1. Overall WSIs Concentration
3.2. Overview of Air Quality and Influence Factors
3.3. Secondary Transformation
3.4. Long-Term Comparison of WSIs in Lanzhou
3.5. Local Sources
3.6. Potential Source Aanalysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khaniabadi, Y.O.; Sicard, P.; Takdastan, A.; Hopke, P.K.; Taiwo, A.M.; Khaniabadi, F.O.; De Marco, A.; Daryanoosh, M. Mortality and morbidity due to ambient air pollution in Iran. Clin. Epidemiol. Glob. Health 2019, 7, 222–227. [Google Scholar] [CrossRef] [Green Version]
- Soza, L.N.; Jordanova, P.; Nicolis, O.; Střelec, L.; Stehlík, M. Small sample robust approach to outliers and correlation of atmospheric pollution and health effects in Santiago de Chile. Chemom. Intell. Lab. Syst. 2019, 185, 73–84. [Google Scholar] [CrossRef]
- Tie, X.; Wu, D.; Brasseur, G. Lung cancer mortality and exposure to atmospheric aerosol particles in Guangzhou, China. Atmos. Environ. 2009, 43, 2375–2377. [Google Scholar] [CrossRef]
- Ali-Mohamed, A.Y. Estimation of inorganic particulate matter in the atmosphere of Isa Town, Bahrain, by dry deposition. Atmos. Environ. Part B Urban Atmos. 1991, 25, 397–405. [Google Scholar] [CrossRef]
- Ji, Y.; Li, Q.; Ye, R.; Tian, K.; Tian, X. The Impact of Water-Soluble Inorganic Ions in Particulate Matter (PM2.5) on Litter Decomposition in Chinese Subtropical Forests. Forests 2020, 11, 238. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhao, Q.; Ma, Y.; Duan, F.; Yang, F.; Shi, Z.; Chen, G. Spatial and seasonal variability of PM2.5 acidity at two Chinese megacities: Insights into the formation of secondary inorganic aerosols. Atmos. Chem. Phys. Discuss. 2012, 12, 1377–1395. [Google Scholar] [CrossRef] [Green Version]
- Ryou, H.G.; Heo, J.; Kim, S.-Y. Erratum to “Source apportionment of PM10 and PM2.5 air pollution, and possible impacts of study characteristics in South Korea” [Environ. Pollut. 240 (2018) 963–972]. Environ. Pollut. 2018, 242, 2135. [Google Scholar] [CrossRef]
- Contini, D.; Cesari, D.; Genga, A.; Siciliano, M.; Ielpo, P.; Guascito, M.R.; Conte, M. Source apportionment of size-segregated atmospheric particles based on the major water-soluble components in Lecce (Italy). Sci. Total. Environ. 2014, 472, 248–261. [Google Scholar] [CrossRef]
- Khoder, M.I.; Hassan, S.K. Weekday/weekend differences in ambient aerosol level and chemical characteristics of water-soluble components in the city centre. Atmos. Environ. 2008, 42, 7483–7493. [Google Scholar] [CrossRef]
- Takeuchi, M.; Okochi, H.; Igawa, M. Characteristics of water-soluble components of atmospheric aerosols in Yokohama and Mt. Oyama, Japan from 1990 to 2001. Atmos. Environ. 2004, 38, 4701–4708. [Google Scholar] [CrossRef]
- Deng, X.-L.; Shi, C.-E.; Wu, B.-W.; Yang, Y.-J.; Jin, Q.; Wang, H.-L.; Zhu, S.; Yu, C. Characteristics of the water-soluble components of aerosol particles in Hefei, China. J. Environ. Sci. 2016, 42, 32–40. [Google Scholar] [CrossRef]
- Dui, W.; Chen, W.C.; Chang, Y.D.; Xiang, P.Y.; Mao, J.T.; Yu, Q. A primary study of the size-distribution and water soluble composition distribution of atmospheric aerosols over south China. J. Trop. Meteorol. 1994, 10, 85–96. [Google Scholar]
- Dui, W. The distribution characteristics of water-soluble composition of atmospheric aerosol over north of the south China sea. Sci. Atmos. Sin. 1995, 19, 5. [Google Scholar]
- Hu, G.; Zhang, Y.; Sun, J.; Zhang, L.; Shen, X.; Lin, W.; Yang, Y. Variability, formation and acidity of water-soluble ions in PM2.5 in Beijing based on the semi-continuous observations. Atmos. Res. 2014, 145–146, 1–11. [Google Scholar] [CrossRef]
- Wang, Y.; Zhuang, G.; Zhang, X.; Huang, K.; Xu, C.; Tang, A.; Chen, J.; An, Z. The ion chemistry, seasonal cycle, and sources of PM2. 5 and TSP aerosol in Shanghai Atmos. Environ. 2006, 40, 2935–2952. [Google Scholar]
- Ma, Y.; Wang, Z.; Tan, Y.; Xu, S.; Kong, S.; Wu, G.; Wu, X.; Li, H. Comparison of inorganic chemical compositions of atmospheric TSP, PM10 and PM2.5 in northern and southern Chinese coastal cities. J. Environ. Sci. 2017, 55, 339–353. [Google Scholar] [CrossRef]
- Shen, Z.; Cao, J.; Arimoto, R.; Han, Z.; Zhang, R.; Han, Y.; Liu, S.; Okuda, T.; Nakao, S.; Tanaka, S. Ionic composition of TSP and PM2.5 during dust storms and air pollution episodes at Xi’an, China. Atmospheric Environ. 2009, 43, 2911–2918. [Google Scholar] [CrossRef]
- Tao, Y.; An, X.; Sun, Z.; Hou, Q.; Wang, Y. Association between dust weather and number of admissions for patients with respiratory diseases in spring in Lanzhou. Sci. Total. Environ. 2012, 423, 8–11. [Google Scholar] [CrossRef]
- Tan, J.; Zhang, L.; Zhou, X.; Duan, J.; Li, Y.; Hu, J.; He, K. Chemical characteristics and source apportionment of PM2.5 in Lanzhou, China. Sci. Total. Environ. 2017, 601–602, 1743–1752. [Google Scholar] [CrossRef]
- Wang, Y.; Jia, C.; Tao, J.; Zhang, L.; Liang, X.; Ma, J.; Gao, H.; Huang, T.; Zhang, K. Chemical characterization and source apportionment of PM2.5 in a semi-arid and petrochemical-industrialized city, Northwest China. Sci. Total. Environ. 2016, 573, 1031–1040. [Google Scholar] [CrossRef]
- Chu, P.C.; Chen, Y.; Lu, S.; Li, Z.; Lu, Y. Particulate air pollution in Lanzhou China. Environ. Int. 2008, 34, 698–713. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Sun, Y.; Tao, Y.; Guo, Y.; Li, Z.; Zhao, X.; Zhou, S. Pollution characteristics in a dusty season based on highly time-resolved online measurements in northwest China. Sci. Total. Environ. 2019, 650, 2545–2558. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, T.; Li, Z.; Tao, Y.; Wang, F.; Zhang, X.; Xu, C.; Ma, S.; Huang, J. Particulate and gaseous pollutants in a petrochemical industrialized valley city, Western China during 2013–2016. Environ. Sci. Pollut. Res. 2018, 25, 15174–15190. [Google Scholar] [CrossRef]
- Qiu, X.; Duan, L.; Gao, J.; Wang, S.; Chai, F.; Hu, J.; Zhang, J.; Yun, Y. Chemical composition and source apportionment of PM10 and PM2.5 in different functional areas of Lanzhou, China. J. Environ. Sci. 2016, 40, 75–83. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, C.; Murlis, J. Study on Winter Air Pollution Control in Lanzhou, China. Water Air Soil Pollut. 2001, 127, 351–372. [Google Scholar] [CrossRef]
- Liu, B.Y.H.; Pui, D.Y.H.; Rubow, K.L.; Marple, V.A. Aerosols in the Mining and Industrial Work Environments, American Scientist, Volume 3: Instrumentation; Ann Arbor Science: Ann Arbor, MI, USA, 1984; pp. 989–1038. [Google Scholar]
- Zhang, X.Y.; Li, Z.Q.; Zhou, P.; Wang, S.J. Characteristics and source of aerosols at Shiyi Glacier, Qilian Mountains, China. Sci. Cold Arid Reg. 2016, 8, 135–146. [Google Scholar] [CrossRef]
- Zhao, S.; Li, Z.; Zhou, P. Ion chemistry and individual particle analysis of atmospheric aerosols over Mt. Bogda of eastern Tianshan Mountains, Central Asia. Environ. Monit. Assess. 2010, 180, 409–426. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.P.; Li, Z.Q. Determination of soluble ions in atmospheric aerosol by ion chromatography. Mod. Sci. Instrum. 2004, 5, 46–49. [Google Scholar]
- Zhang, R.; Sun, X.; Shi, A.; Huang, Y.; Yan, J.; Nie, T.; Yan, X.; Li, X. Secondary inorganic aerosols formation during haze episodes at an urban site in Beijing, China. Atmos. Environ. 2018, 177, 275–282. [Google Scholar] [CrossRef]
- Draxler, R.R.; Hess, G.D. An Overview of the Hysplit 4 modeling system for trajectories, dispersion and deposition. Aust. Meteorol. Mag. 1998, 47, 295–308. [Google Scholar]
- Zhang, X.; Yuan, Z.; Li, W.; Lau, A.K.; Yu, J.Z.; Fung, J.C.; Zheng, J.; Yu, A.L. Eighteen-year trends of local and non-local impacts to ambient PM10 in Hong Kong based on chemical speciation and source apportionment. Atmos. Res. 2018, 214, 1–9. [Google Scholar] [CrossRef]
- Polissar, A. The aerosol at Barrow, Alaska: Long-term trends and source locations. Atmos. Environ. 1999, 33, 2441–2458. [Google Scholar] [CrossRef]
- Polissar, A.V.; Hopke, P.K.; Harris, J.M. Source Regions for Atmospheric Aerosol Measured at Barrow, Alaska. Environ. Sci. Technol. 2001, 35, 4214–4226. [Google Scholar] [CrossRef]
- Babu, S.S.; Chaubey, J.P.; Moorthy, K.K.; Gogoi, M.M.; Kompalli, S.K.; Sreekanth, V.; Bagare, S.P.; Bhatt, B.C.; Gaur, V.K.; Prabhu, T.P.; et al. High altitude (∼4520 m amsl) measurements of black carbon aerosols over western trans-Himalayas: Seasonal heterogeneity and source apportionment. J. Geophys. Res. Space Phys. 2011, 116. [Google Scholar] [CrossRef] [Green Version]
- Zhao, S.; Liu, S.; Hou, X.; Cheng, F.; Wu, X.; Dong, S.; Beazley, R. Temporal dynamics of SO2 and NOX pollution and contributions of driving forces in urban areas in China. Environ. Pollut. 2018, 242, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Kuniyal, J.C.; Sharma, M.; Chand, K.; Mathela, C.S. Water Soluble Ionic Components in Particulate Matter (PM10) during High Pollution Episode Days at Mohal and Kothi in the North-Western Himalaya, India. Aerosol Air Qual. Res. 2015, 15, 529–543. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.Y.; Cao, J.; Li, L.; Arimoto, R.; Cheng, Y.; Huebert, B.; Wang, D. Characterization of Atmospheric Aerosol over XiAn in the South Margin of the Loess Plateau, China. Atmos. Environ. 2002, 36, 4189–4199. [Google Scholar] [CrossRef]
- Seinfeld, J.H. Air pollution: A half century of progress. AIChE J. 2004, 50, 1096–1108. [Google Scholar] [CrossRef]
- Huang, K.; Zhuang, G.; Li, J.; Wang, Q.; Sun, Y.; Lin, Y.; Fu, J.S. Mixing of Asian dust with pollution aerosol and the transformation of aerosol components during the dust storm over China in spring 2007. J. Geophys. Res. Space Phys. 2010, 115, D00K13. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Xia, D.; Wang, T.; Xue, X.; Li, J. Dust sources in arid and semiarid China and southern Mongolia: Impacts of geomorphological setting and surface materials. Geomorphology 2008, 97, 583–600. [Google Scholar] [CrossRef]
- Xu, L.; Duan, F.; He, K.; Ma, Y.; Zhu, L.; Zheng, Y.; Huang, T.; Kimoto, T.; Ma, T.; Li, H.; et al. Characteristics of the secondary water-soluble ions in a typical autumn haze in Beijing. Environ. Pollut. 2017, 227, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Tsai, Y.I.; Kuo, S.-C. PM aerosol water content and chemical composition in a metropolitan and a coastal area in southern Taiwan. Atmos. Environ. 2005, 39, 4827–4839. [Google Scholar] [CrossRef]
- Chai, F.H. Review and prospect on the atmospheric pollution control in China. Environ. Sustain. Dev. 2020, 45, 5–15. [Google Scholar] [CrossRef]
- Zou, Z.; Xu, Y.J.; Zhao, H.L. Analysis of flue gas sulfur dioxide pollution control technology. Eng. Technol. and Appl. 2017, 11, 100–225. [Google Scholar] [CrossRef]
- Sun, Y.; Zhuang, G.; Tang, A.A.; Wang, Y.; An, Z. Chemical Characteristics of PM2.5 and PM10in Haze−Fog Episodes in Beijing. Environ. Sci. Technol. 2006, 40, 3148–3155. [Google Scholar] [CrossRef]
- Meng, C.; Wang, L.; Zhang, F.; Wei, Z.; Ma, S.; Ma, X.; Yang, J. Characteristics of concentrations and water-soluble inorganic ions in PM2.5 in Handan City, Hebei province, China. Atmos. Res. 2016, 171, 133–146. [Google Scholar] [CrossRef]
- Khoder, M. Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area. Chemosphere 2002, 49, 675–684. [Google Scholar] [CrossRef]
- Gao, X.; Yang, L.; Cheng, S.; Gao, R.; Zhou, Y.; Xue, L.; Shou, Y.; Wang, J.; Wang, X.; Nie, W.; et al. Semi-continuous measurement of water-soluble ions in PM2.5 in Jinan, China: Temporal variations and source apportionments. Atmos. Environ. 2011, 45, 6048–6056. [Google Scholar] [CrossRef]
- Feng, T.; Bei, N.; Zhao, S.; Wu, J.; Li, X.; Zhang, T.; Cao, J.; Zhou, W.; Li, G. Wintertime nitrate formation during haze days in theGuanzhong basin, China: A case study. Environ. Pollut. 2018, 243, 1057–1067. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, J.; Luo, B.; Wang, L.; Tang, G.; Liu, Z.; Song, H.; Zhang, W.; Yuan, L.; Wang, Y. Water-soluble ions in PM2.5 during spring haze and dust periods in Chengdu, China: Variations, nitrate formation and potential source areas. Environ. Pollut. 2018, 243, 1740–1749. [Google Scholar] [CrossRef]
- Zhang, N.; Li, L.P. Comparison of the concentration of water-soluble ions in atmospheric aerosols in 1990 and 2007. Environ. Sci. Res. 2010, 23, 647–652. [Google Scholar] [CrossRef]
- Li, Y.H. Pollution characteristics of water-soluble ions in fine particulate matter in Lanzhou city. Environmental Chemistry. 2016, 35, 1799–1807. [Google Scholar]
- García, J.H.; Li, W.-W.; Arimoto, R.; Okrasinski, R.; Greenlee, J.; Walton, J.; Schloesslin, C.; Sage, S. Characterization and implication of potential fugitive dust sources in the Paso del Norte region. Sci. Total. Environ. 2004, 325, 95–112. [Google Scholar] [CrossRef]
- Watson, J.G.; Chow, J.C. Source characterization of major emission sources in the Imperial and Mexicali Valleys along the US/Mexico border. Sci. Total. Environ. 2001, 276, 33–47. [Google Scholar] [CrossRef]
- Yuan, H.; Zhuang, G.; Li, J.; Wang, Z.; Li, J. Mixing of mineral with pollution aerosols in dust season in Beijing: Revealed by source apportionment study. Atmos. Environ. 2008, 42, 2141–2157. [Google Scholar] [CrossRef]
- Sun, Y.L.; Wang, Z.F.; Fu, P.Q.; Yang, T.; Jiang, Q.; Dong, H.B.; Li, J.; Jia, J.J. Aerosol composition, sources and processes during wintertime in Beijing, China. Atmos. Chem. Phys. Discuss. 2013, 13, 4577–4592. [Google Scholar] [CrossRef] [Green Version]
- Yu, L.; Wang, G.; Zhang, R.; Zhang, L.; Song, Y.; Wu, B.; Li, X.; An, K.; Chu, J. Characterization and Source Apportionment of PM2.5 in an Urban Environment in Beijing. Aerosol Air Qual. Res. 2013, 13, 574–583. [Google Scholar] [CrossRef] [Green Version]
Events | Project | Cl− | NO3− | SO42− | Na+ | NH4+ | K+ | Mg2+ | Ca2+ | Total Ions |
---|---|---|---|---|---|---|---|---|---|---|
Heating period | Mean value | 2.11 | 12.20 | 6.83 | 0.84 | 5.84 | 0.65 | 0.39 | 6.82 | 35.68 |
Maximal value | 4.34 | 40.51 | 18.18 | 1.68 | 11.85 | 1.42 | 0.71 | 13.38 | 89.99 | |
Minimum value | 0.52 | 2.07 | 3.12 | 0.27 | 0.64 | 0.19 | 0.13 | 2.48 | 12.84 | |
Percentage/% | 5.93 | 34.18 | 19.15 | 2.35 | 16.37 | 1.81 | 1.10 | 19.11 | 100.00 | |
STD | 1.12 | 9.69 | 3.47 | 0.34 | 2.77 | 0.35 | 0.14 | 2.93 | 19.17 | |
Non-heating period | Mean value | 0.51 | 2.41 | 3.27 | 0.41 | 1.04 | 0.24 | 0.21 | 4.37 | 12.45 |
Maximal value | 1.02 | 5.89 | 5.24 | 2.67 | 2.18 | 0.53 | 0.56 | 9.18 | 20.49 | |
Minimum value | 0.19 | 0.35 | 1.03 | 0.03 | 0.18 | 0.09 | 0.05 | 0.80 | 3.96 | |
Percentage/% | 4.07 | 19.33 | 26.22 | 3.31 | 8.36 | 1.94 | 1.69 | 35.07 | 100.00 | |
STD | 0.23 | 1.48 | 1.20 | 0.50 | 0.72 | 0.10 | 0.11 | 2.20 | 4.21 |
Time | SO42− | NO3− | Ca2+ | NH4+ | Cl− | Na+ | K+ | Mg2+ | Reference |
---|---|---|---|---|---|---|---|---|---|
1990 | 57.10 | 9.69 | 11.79 | 10.72 | 3.16 | 4.03 | 2.04 | 1.47 | [52] |
2005 | 32.05 | 13.56 | 12.90 | 19.29 | 12.86 | 4.09 | 3.75 | 1.49 | [52] |
2007 | 32.35 | 13.51 | 15.06 | 18.08 | 11.26 | 4.21 | 3.93 | 1.60 | [52] |
2012 | 33.96 | 20.84 | 4.42 | 20.48 | 13.41 | 2.68 | 3.29 | 0.92 | [53] |
2013 | 38.76 | 18.81 | 9.50 | 19.38 | 6.40 | 2.45 | 3.48 | 1.22 | [53] |
2014 | 29.44 | 27.72 | 6.90 | 15.52 | 12.07 | 2.52 | 4.64 | 1.19 | [20] |
2016 | 20.88 | 29.27 | 24.93 | 13.57 | 5.43 | 2.76 | 1.84 | 1.34 | This study |
Period | Air Mass Type | SO42− | NO3− | NH4+ | Ca2+ | Cl− | Na+ | Mg2+ | K+ |
---|---|---|---|---|---|---|---|---|---|
Heating period | T1 | 7.93 | 4.36 | 3.84 | 7.00 | 0.97 | 0.98 | 0.36 | 0.37 |
T2 | 5.47 | 8.60 | 8.73 | 6.90 | 2.57 | 0.79 | 0.40 | 0.70 | |
T3 | 6.85 | 12.91 | 5.79 | 6.80 | 2.16 | 0.83 | 0.39 | 0.66 | |
Non-heating period | T1 | 3.23 | 2.99 | 1.16 | 4.96 | 0.60 | 0.74 | 0.25 | 0.25 |
T2 | 2.87 | 2.21 | 0.94 | 3.64 | 0.43 | 0.22 | 0.16 | 0.22 | |
T3 | 3.54 | 2.21 | 1.04 | 4.51 | 0.51 | 0.36 | 0.22 | 0.25 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Li, Z.; Wang, F.; Zhou, X.; Wang, F.; Ma, S.; Zhang, X. Water-Soluble Ions in Atmospheric Aerosol Measured in a Semi-Arid and Chemical-Industrialized City, Northwest China. Atmosphere 2021, 12, 456. https://doi.org/10.3390/atmos12040456
Jiang H, Li Z, Wang F, Zhou X, Wang F, Ma S, Zhang X. Water-Soluble Ions in Atmospheric Aerosol Measured in a Semi-Arid and Chemical-Industrialized City, Northwest China. Atmosphere. 2021; 12(4):456. https://doi.org/10.3390/atmos12040456
Chicago/Turabian StyleJiang, Huimin, Zhongqin Li, Feiteng Wang, Xi Zhou, Fanglong Wang, Shan Ma, and Xin Zhang. 2021. "Water-Soluble Ions in Atmospheric Aerosol Measured in a Semi-Arid and Chemical-Industrialized City, Northwest China" Atmosphere 12, no. 4: 456. https://doi.org/10.3390/atmos12040456
APA StyleJiang, H., Li, Z., Wang, F., Zhou, X., Wang, F., Ma, S., & Zhang, X. (2021). Water-Soluble Ions in Atmospheric Aerosol Measured in a Semi-Arid and Chemical-Industrialized City, Northwest China. Atmosphere, 12(4), 456. https://doi.org/10.3390/atmos12040456