Effects of Season and House Microclimate on Fungal Flora in Air and Broiler Trachea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location and Climate
2.2. Experimental Design
2.3. Statistical Analysis
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Radon, K.; Danuser, B.; Iversen, M.; Monso, E.; Weber, C.; Hartung, J.; Donham, K.J.; Palmgren, U.; Nowak, D. Air contaminants in different European farming environments. Ann. Agric. Environ. Med. 2002, 9, 41–48. [Google Scholar] [PubMed]
- Matković, K.; Vučemilo, M.; Vinković, B. Airborne fungi in dwellings for dairy cows and laying hens. Arh. Hig. Rada Toksikol. 2009, 60, 395–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seedorf, J.; Hartung, J.; Schröder, M.; Linkert, K.H.; Phillips, V.R.; Holden, M.R.; Sneath, R.W.; Short, J.L.; White, R.P.; Pedersen, S.; et al. Concentrations and emissions of airborne endotoxins and microorganisms in livestock buildings in northern Europe. J. Agric. Eng. Res. 1998, 70, 97–109. [Google Scholar] [CrossRef] [Green Version]
- Jo, W.-K.; Kang, J.-H. Exposure levels of airborne bacteria and fungi in Korean swine and poultry sheds. Arch. Environ. Occup. Health 2005, 60, 140–146. [Google Scholar] [CrossRef]
- Lonc, E.; Plewa, K. Microbiological air contamination in poultry houses. Pol. J. Environ. Stud. 2010, 19, 15–19. [Google Scholar]
- Kim, J.-D. Keratinolytic activity of five Aspergillus species isolated from poultry farming soil in Korea. Mycobiology 2003, 31, 157–161. [Google Scholar] [CrossRef] [Green Version]
- Dhama, K.; Chakraborty, S.; Verma, A.K.; Tiwari, R.; Barathidasan, R.; Kumar, A.; Singh, S.D. Fungal/mycotic diseases of poultry—diagnosis, treatment and control: A review. Pak. J. Biol. Sci. 2013, 16, 1626–1640. [Google Scholar] [CrossRef] [Green Version]
- Kapetanov, M.C.; Potkonjak, D.V.; Milanov, D.S.; Stojanov, I.M.; Živkov Baloš, M.M.; Prunić, B.Z. Investigation of dissemination of aspergillosis in poultry and possible control measures. Zb. Matice Srp. Prir. Nauk. 2011, 120, 269–278. [Google Scholar] [CrossRef]
- Girma, G.; Abebaw, M.; Zemene, M.; Mamuye, Y.; Getaneh, G. A review on aspergillosis in poultry. J. Vet. Sci. Technol. 2016, 7, 382. [Google Scholar] [CrossRef] [Green Version]
- Arné, P.; Thierry, S.; Wang, D.; Deville, M.; Loc’h, G.L.; Desoutter, A.; Féménia, F.; Nieguitsila, A.; Huang, W.; Chermette, R.; et al. Aspergillus fumigatus in poultry. Int. J. Microbiol. 2011, 2011, 746356. [Google Scholar] [CrossRef] [Green Version]
- Dykstra, M.J.; Charlton, B.R.; Chin, R.P.; Barnes, H.J. Fungal infections. In Diseases of Poultry, 13th ed.; Swayne, D.E., Glisson, J.R., McDougald, L.R., Nolan, L.K., Suarez, D.L., Nair, V.L., Eds.; Wiley-Blackwell: Ames, IA, USA, 2013; pp. 1077–1096. [Google Scholar]
- Pattron, D.D. Aspergillus, health implication & recommendations for public health food safety. Internet J. Food Saf. 2006, 8, 19–23. [Google Scholar]
- Cafarchia, C.; Camarda, A.; Iatta, R.; Danesi, P.; Favuzzi, V.; Paola, G.D.; Pugliese, N.; Caroli, A.; Montagna, M.T.; Otranto, D. Environmental contamination by Aspergillus spp. in laying hen farms and associated health risks for farm workers. J. Med. Microbiol. 2014, 63, 464–470. [Google Scholar] [CrossRef] [Green Version]
- Sabino, R.; Veríssimo, C.; Viegas, C.; Viegas, S.; Brandão, J.; Alves-Correia, M.; Borrego, L.-M.; Clemons, K.V.; Stevens, D.A.; Richardson, M. The role of occupational Aspergillus exposure in the development of diseases. Med. Mycol. 2019, 57 (Suppl. 2), S196–S205. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, M.; Wang, Y.; Chai, T.; Cai, Y.; Li, N. Pathogenicity and immune responses of Aspergillus fumigatus infection in chickens. Front. Vet. Sci. 2020, 7, 143. [Google Scholar] [CrossRef] [Green Version]
- Beernaert, L.A.; Pasmans, F.; van Waeyenberghe, L.; Haesebrouck, F.; Martel, A. Aspergillus infections in birds: A review. Avian Pathol. 2010, 39, 325–331. [Google Scholar] [CrossRef] [Green Version]
- Sajid, M.A.; Khan, I.A.; Rauf, U. Aspergillus fumigatus in commercial poultry flocks, a serious threat to poultry industry in Pakistan. J. Anim. Plant Sci. 2006, 16, 79–81. [Google Scholar]
- Sultana, S.; Rashid, S.M.H.; Islam, M.N.; Ali, M.H.; Islam, M.M.; Azam, M.G. Pathological investigation of avian aspergillosis in commercial broiler chicken at Chittagong district. Int. J. Innov. Appl. Stud. 2015, 10, 366–376. [Google Scholar]
- Viegas, C.; Viegas, S.; Monteiro, A.; Carolino, E.; Sabino, R.; Verissimo, C. Air contaminants in animal production: The poultry case. In Air Pollution XX.; Longhurst, J.W.S., Brebbia, C.A., Eds.; WIT Press: Ashurst, Southampton, UK, WIT Transactions on Ecology and the Environment; 2012; Volume 157, pp. 315–323. [Google Scholar] [CrossRef] [Green Version]
- Popescu, S.; Borda, C.; Diugan, E. Microbiological air contamination in different types of housing systems for laying hens. ProEnvironment 2013, 6, 549–555. [Google Scholar]
- Lawniczek-Walczyk, A.; Górny, R.L.; Golofit-Szymczak, M.; Niesler, A.; Wlazlo, A. Occupational exposure to airborne microorganisms, endotoxins and β-glucans in poultry houses at different stages of the production cycle. Ann. Agric. Environ. Med. 2013, 20, 259–268. [Google Scholar]
- Debey, M.C.; Trampel, D.W.; Richard, J.L.; Bundy, D.S.; Hoffman, L.J.; Meyer, V.M.; Cox, D.F. Effect of environmental variables in turkey confinement houses on airborne Aspergillus and mycoflora composition. Poult. Sci. 1995, 74, 463–471. [Google Scholar] [CrossRef]
- Wójcik, A.; Chorąży, Ł.; Mituniewicz, T.; Witkowska, D.; Iwańczuk-Czernik, K.; Sowińska, J. Microbial air contamination in poultry houses in the summer and winter. Pol. J. Environ. Stud. 2010, 19, 1045–1050. [Google Scholar]
- County Development Strategy of Koprivnica-Križevci County 2014–2020. (in Croatian). Available online: https://www.pora.com.hr/images/doc/2017/ZRS_KKZ-14-20.pdf (accessed on 12 March 2021).
- Aviagen. Ross Broiler Management Handbook 2018. Available online: http://en.aviagen.com/assets/Tech_Center/Ross_Broiler/Ross-BroilerHandbook2018-EN.pdf (accessed on 16 November 2020).
- Brown, A.E. Benson’s Microbiological Applications: Laboratory Manual in General Microbiology, 9th ed.; McGraw-Hill: New York, NY, USA, 2005; pp. 57–64. [Google Scholar]
- Vučemilo, M.; Matković, K.; Vinković, B.; Jakšić, S.; Granić, K.; Mas, N. The effect of animal age on air pollutant concentration in a broiler house. Czech J. Anim. Sci. 2007, 52, 170–174. [Google Scholar] [CrossRef]
- Vučemilo, M.; Matković, K.; Vinković, B.; Macan, J.; Varnai, V.M.; Prester, L.; Granić, K.; Orct, T. Effect of microclimate on the airborne dust and endotoxin concentration in a broiler house. Czech J. Anim. Sci. 2008, 53, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Matković, K.; Marušić, D.; Ostović, M.; Pavičić, Ž.; Matković, S.; Ekert Kabalin, A.; Lucić, H. Effect of litter type and perches on footpad dermatitis and hock burn in broilers housed at different stocking densities. S. Afr. J. Anim. Sci. 2019, 49, 546–554. [Google Scholar] [CrossRef]
- Brouček, J.; Čermak, B. Emission of harmful gases from poultry farms and possibilities of their reduction. Ekol. Bratisl. 2015, 34, 89–100. [Google Scholar] [CrossRef] [Green Version]
- David, B.; Mejdell, C.; Michel, V.; Lund, V.; Moe, R.O. Air quality in alternative housing systems may have an impact on laying hen welfare. Part II—Ammonia. Animals 2015, 5, 886–896. [Google Scholar] [CrossRef] [Green Version]
- Lonc, E.; Plewa, K. Comparison of indoor and outdoor bioaerosols in poultry farming. In Advanced Topics in Environmental Health and Air Pollution Case Studies; Moldoveanu, A., Ed.; IntechOpen: Rijeka, Croatia, 2011; Available online: https://www.intechopen.com/books/advanced-topics-in-environmental-health-and-air-pollution-case-studies/comparison-of-indoor-and-outdoor-bioaerosols-in-poultry-farming (accessed on 18 December 2020). [CrossRef] [Green Version]
- Matković, K.; Vučemilo, M.; Vinković, B. Dust and endotoxin in laying hen dwellings. Turk. J. Vet. Anim. Sci. 2012, 36, 189–195. [Google Scholar] [CrossRef]
- Erisman, J.W.; Schaap, M. The need for ammonia abatement with respect to secondary PM reductions in Europe. Environ. Pollut. 2004, 129, 159–163. [Google Scholar] [CrossRef]
- Kumari, P.; Woo, C.; Yamamoto, N.; Choi, H.-L. Variations in abundance, diversity and community composition of airborne fungi in swine houses across seasons. Sci. Rep. 2016, 6, 37929. [Google Scholar] [CrossRef]
- Filazi, A.; Yurdakok-Dikmen, B.; Kuzukiran, O.; Sireli, U.T. Mycotoxins in poultry. In Poultry Science; Manafi, M., Ed.; IntechOpen: Rijeka, Croatia, 2017; Available online: https://www.intechopen.com/books/poultry-science/mycotoxins-in-poultry (accessed on 17 December 2020). [CrossRef] [Green Version]
- Publications Office of the European Union. Commission Directive (EU) 2019/1833 of 24 October 2019 amending Annexes I, III, V and VI to Directive 2000/54/EC of the European Parliament and of the Council as regards purely technical adjustments. O. J. 2019, L 279, 54–79. [Google Scholar]
- Van Diepeningen, A.D.; Brankovics, B.; Iltes, J.; van der Lee, T.A.J.; Waalwijk, C. Diagnosis of Fusarium infections: Approaches to identification by the clinical mycology laboratory. Curr. Fungal Infect. Rep. 2015, 9, 135–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batista, B.G.; de Chaves, M.A.; Reginatto, P.; Saraiva, O.J.; Fuentefria, A.M. Human fusariosis: An emerging infection that is difficult to treat. Rev. Soc. Bras. Med. Trop. 2020, 53, e20200013. [Google Scholar] [CrossRef] [PubMed]
Parameter | Summer | Winter |
---|---|---|
Mean ± SD (Min–Max) | ||
Air temperature (°C) | 28.16 ± 2.59 (22.60–32.10) | 27.12 ± 2.93 (22.20–32.00) |
Relative humidity (%) | 61.87 ± 4.78 (54.00–70.50) | 68.63 ** ± 9.21 (52.00–80.70) |
Airflow rate (m/s) | 0.18 ± 0.09 (0.03–0.32) | 0.15 ± 0.07 (0.05–0.29) |
Ammonia (ppm) | 6.52 ± 2.63 (1.00–11.00) | 10.96 *** ± 5.62 (3.00–21.00) |
Parameter | Summer | Winter |
---|---|---|
Mean ± SD (Min–Max) | ||
Air temperature (°C) | 24.90 ± 5.40 (14.00–29.00) | −0.02 * ± 3.71 (−6.70–4.60) |
Relative humidity (%) | 55.99 ± 14.74 (37.90–84.10) | 66.80 * ± 15.96 (40.20–87.20) |
Airflow rate (m/s) | 0.59 ± 0.42 (0.18–1.50) | 0.98 * ± 0.72 (0.43–3.36) |
Parameter | Summer | Winter |
---|---|---|
Airborne fungi (CFU/m3) Mean ± SD (Min–Max) | 2.82 × 104 ± 2.81 × 102 (4.9 × 103–8.1 × 104) | 1.92 ** × 104 ± 1.27 × 104 (2 × 102–3.7 × 104) |
Tracheal fungi (CFU/swab) Median (Min–Max) | 2.70 × 102 (50–4.01 × 103) | 1.91 ** × 103 (0–1.71 × 104) |
Parameter | Air Temperature (°C) | Relative Humidity (%) | Airflow Rate (m/s) | Ammonia (ppm) | Airborne Fungi (CFU/m3) |
---|---|---|---|---|---|
Airborne Fungi (CFU/m3) | −0.164 | 0.437 * | 0.195 | 0.335 * | - |
Tracheal Fungi (CFU/swab) | −0.437 * | 0.691 * | 0.197 * | 0.491 * | 0.208 * |
Fungi | Summer | Winter |
---|---|---|
CFU/m3 Median (Min–Max) | ||
Aspergillus sp. | 1.20 × 103 (0–4.04 × 104) | 1.00 *** × 102 (0–9.00 × 102) |
A. flavus | 1.00 × 103 (0–3.99 × 104) | 1.00 *** × 102 (0–6.00 × 102) |
A. fumigatus | Not detected | 0 (0–3.00 × 102) |
A. niger | 2.00 × 102 (0–2.00 × 103) | 0 *** (0–3.00 × 102) |
A. terreus | Not detected | 0 (0–3.00 × 102) |
Cladosporium sp. | 0 (0–1.00 × 103) | 0 (0–8.00 × 102) |
Fusarium sp. | 0 (0–2.00 × 102) | 0 (0–1.00 × 102) |
Mucor sp. | 0 (0–3.00 × 102) | 1.00 *** × 102 (0–2.60 × 104) |
Penicillium sp. | 0 (0–8.00 × 102) | 2.50 *** × 103 (0–1.00 × 104) |
Rhizopus sp. | 0 (0–1.00 × 102) | 0 (0–1.00 × 102) |
Yeasts | 2.14 × 104 (4.00 × 103–3.99 × 104) | 5.00 *** × 103 (0–3.40 × 104) |
Unidentified | 1.00 × 102 (0–6.00 × 102) | 0 *** (0–2.00 × 102) |
Fungi | Summer | Winter |
---|---|---|
CFU/m3 Median (Min–Max) | ||
Aspergillus sp. | 0 (0–1.00 × 102) | 0 *** (0–40) |
A. flavus | 0 (0–1.00 × 102) | 0 *** (0–40) |
A. fumigatus | Not detected | 0 (0–30) |
A. niger | 0 (0–30) | 0 (0–20) |
A. terreus | Not detected | 0 (0–10) |
Cladosporium sp. | 0 (0–1.80 × 102) | 0 *** (0–20) |
Fusarium sp. | 0 (0–20) | 0 (0–10) |
Mucor sp. | 0 (0–30) | 0 *** (0–3.10 × 102) |
Penicillium sp. | 10 (0–1.70 × 102) | 10 * (0–6.60 × 102) |
Rhizopus sp. | 0 (0–20) | 0 (0–20) |
Trichophyton sp. | Not detected | 0 (0–10) |
Yeasts | 2.20 × 102 (0–3.99 × 103) | 1.65 ** × 103 (0–1.71 × 104) |
Unidentified | 0 (0–1.00 × 102) | 0 *** (0–10) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horvatek Tomić, D.; Ravić, I.; Kabalin, A.E.; Kovačić, M.; Gottstein, Ž.; Ostović, M. Effects of Season and House Microclimate on Fungal Flora in Air and Broiler Trachea. Atmosphere 2021, 12, 459. https://doi.org/10.3390/atmos12040459
Horvatek Tomić D, Ravić I, Kabalin AE, Kovačić M, Gottstein Ž, Ostović M. Effects of Season and House Microclimate on Fungal Flora in Air and Broiler Trachea. Atmosphere. 2021; 12(4):459. https://doi.org/10.3390/atmos12040459
Chicago/Turabian StyleHorvatek Tomić, Danijela, Ivica Ravić, Anamaria Ekert Kabalin, Matija Kovačić, Željko Gottstein, and Mario Ostović. 2021. "Effects of Season and House Microclimate on Fungal Flora in Air and Broiler Trachea" Atmosphere 12, no. 4: 459. https://doi.org/10.3390/atmos12040459
APA StyleHorvatek Tomić, D., Ravić, I., Kabalin, A. E., Kovačić, M., Gottstein, Ž., & Ostović, M. (2021). Effects of Season and House Microclimate on Fungal Flora in Air and Broiler Trachea. Atmosphere, 12(4), 459. https://doi.org/10.3390/atmos12040459