Evaluation of the Performance of CMIP6 Models in Reproducing Rainfall Patterns over North Africa
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Domain
2.2. Data
2.3. Methods
2.3.1. Statistical Validation of CMIP6
2.3.2. Trend Analysis
3. Results and Discussion
3.1. Annual Cycle
3.2. Trend Analysis
3.3. Statistical Analysis
3.3.1. Student’s t-Test, Bias, Coefficient of Determination, RMSE, and ECDF Metrics
3.3.2. Cumulative Density Function (ECDF) Analysis
3.3.3. Taylor Score and Ranking
4. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A. List of Selected CMIP6 Models
No | Names | Institution | Resolution |
---|---|---|---|
1 | BCC-CSM2-MR | Beijing Climate Center (BCC) and China Meteorological Administration (CMA), China | 1.13° × 1.13° |
2 | BCC-EM1 | Beijing Climate Center (BCC) and China Meteorological Administration (CMA), China | 2.81° × 2.81° |
3 | CanESM5 | Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, Canada | 2.81° × 2.81° |
4 | CESM2 | National Center for Atmospheric Research, USA | 1.25° × 0.94° |
5 | CESM2-WACCM | National Center for Atmospheric Research, USA | 1.25° × 0.94° |
6 | CNRM-CM6-1 | Centre National de Recherches Météorologiques (CNRM); Centre Européen de Recherches et de Formation Avancéeen Calcul Scientifique, France | 1.41°×1.41° |
7 | CNRM-ESM2-1 | Centre National de Recherches Meteorologiques, Toulouse, France | 1.41° × 1.41° |
8 | EC-EARTH3-Veg | Consortium of European research institution and researchers, Europe | 0.70° × 0.70° |
9 | GFDL-ESM4 | Geophysical Fluid Dynamics Laboratory (GFDL), USA | 1.25° × 1.00° |
10 | GFDL-CM4 | Geophysical Fluid Dynamics Laboratory (GFDL), USA | 2.50° × 2.00° |
11 | IPSL-CM6A-LR | Institut Pierre Simon Laplace, Paris, France | 2.50° × 1.26° |
12 | MRI-ESM2-0 | Meteorological Research Institute (MRI), Japan | 1.13° × 1.13° |
13 | NorESM2-LM | Norwegian Climate Centre/Norway | 1.875° × 2.5 |
14 | SAM0-UNICON | Seoul National University, Seoul 08826, Republic of Korea | 1.25° × 0.94° |
15 | UKESM1-0-LL | UK Met Office Hadley Center, UK | 1.88° × 1.25° |
Appendix B. Supplementary Figures
References
- Hochman, A.; Bucchignani, E.; Gershtein, G.; Krichak, S.O.; Alpert, P.; Levi, Y.; Yosef, Y.; Carmona, Y.; Breitgand, J.; Mercogliano, P.; et al. Evaluation of regional COSMO-CLM climate simulations over the eastern Mediterranean for the period 1979–2011. Int. J. Climatol. 2018, 38, 1161–1176. [Google Scholar] [CrossRef]
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Giorgi, F. Climate change hotspots in the CMIP5 global climate model ensemble. Clim. Chang. 2012, 114, 813–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almazroui, M.; Rashid, I.U.; Saeed, S.; Islam, M.N. ENSO influence on summer temperature over Arabian Peninsula: Role of mid-latitude circulation. Clim. Dyn. 2019, 53, 5047–5062. [Google Scholar] [CrossRef]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Gidden, M.J.; Riahi, K.; Smith, S.J.; Fujimori, S.; Luderer, G.; Kriegler, E.; Van Vuuren, D.P.; Van Den Berg, M.; Feng, L.; Klein, D.; et al. Global emissions pathways under different socioeconomic scenarios for use in CMIP6: A dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev. 2019, 12, 1443–1475. [Google Scholar] [CrossRef] [Green Version]
- Philandras, C.M.; Nastos, P.T.; Kapsomenakis, J.; Douvis, K.C.; Tselioudis, G.; Zerefos, C.S. Long term precipitation trends and variability within the Mediterranean region. Nat. Hazards Earth Syst. Sci. 2011, 11, 3235–3250. [Google Scholar] [CrossRef] [Green Version]
- Cook, B.I.; Anchukaitis, K.J.; Touchan, R.; Meko, D.M.; Cook, E.R. Spatiotemporal drought variability in the mediterranean over the last 900 years. J. Geophys. Res. 2016, 121, 2060–2074. [Google Scholar] [CrossRef]
- Lelieveld, J.; Proestos, Y.; Hadjinicolaou, P.; Tanarhte, M.; Tyrlis, E.; Zittis, G. Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century. Clim. Chang. 2016, 137, 245–260. [Google Scholar] [CrossRef] [Green Version]
- Schilling, J.; Hertig, E.; Tramblay, Y.; Scheffran, J. Climate change vulnerability, water resources and social implications in North Africa. Reg. Environ. Chang. 2020, 20, 15. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Schmitz, C.; Lotze-Campen, H.; Gerten, D.; Dietrich, J.P.; Bodirsky, B.; Biewald, A.; Popp, A. Blue water scarcity and the economic impacts of future agricultural trade and demand. Water Resour. Res. 2013, 49, 3601–3617. [Google Scholar] [CrossRef]
- Bucchignani, E.; Cattaneo, L.; Panitz, H.J.; Mercogliano, P. Sensitivity analysis with the regional climate model COSMO-CLM over the CORDEX-MENA domain. Meteorol. Atmos. Phys. 2016, 128, 73–95. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Liebmann, B.; Bladé, I.; Kiladis, G.N.; Carvalho, L.M.V.; Senay, G.B.; Allured, D.; Leroux, S.; Funk, C. Seasonality of African precipitation from 1996 to 2009. J. Clim. 2012, 25, 4304–4322. [Google Scholar] [CrossRef]
- Massoud, E.; Massoud, T.; Guan, B.; Sengupta, A.; Espinoza, V.; Luna, M.D.; Raymond, C.; Waliser, D. Atmospheric rivers and precipitation in the middle east and north africa (Mena). Water 2020, 12, 2863. [Google Scholar] [CrossRef]
- Almazroui, M.; Saeed, F.; Saeed, S.; Nazrul Islam, M.; Ismail, M.; Klutse, N.A.B.; Siddiqui, M.H. Projected Change in Temperature and Precipitation Over Africa from CMIP6. Earth Syst. Environ. 2020, 4, 455–475. [Google Scholar] [CrossRef]
- Nouaceur, Z. Essor économique et crise environnementale d’une capitale sahélienne: Nouakchott. Sécheresse 2010, 21, 63–70. [Google Scholar] [CrossRef]
- Sebbar, A.; Wadi, B.; Fougrach, H.; Mohammed, H.; Abdelmalik, S. Etude de la variabilite du regime pluviometrique au Maroc septentrional (1935–2004). Secheresse 2011, 22, 139–148. [Google Scholar] [CrossRef]
- Kortli, M. Changement Climatique, Eau et Sante en Tunisie. Master’s Thesis, Institut National Agronomique de Tunisie, INRGREF, Tunis, Tunisia, 2012. [Google Scholar]
- Lionello, P.; Malanotte-Rizzoli, P.; Boscolo, R. Mediterranean Climate Variability; Elsevier Science: Amsterdam, The Netherlands, 2006; ISBN 9780080460796. [Google Scholar]
- Nouaceur, Z.; Murărescu, O. Rainfall Variability and Trend Analysis of Annual Rainfall in North Africa. Int. J. Atmos. Sci. 2016, 2016, 1–12. [Google Scholar] [CrossRef]
- Xoplaki, E. Climate Variability over the Mediterranean. Ph.D. Thesis, University of Bern, Bern, Switzerland, 2002. Available online: http://sinus.unibe.ch/klimet/docs/phd_xoplaki.pdf (accessed on 15 September 2020).
- Norrant, C.; Douguédroit, A. Monthly and daily precipitation trends in the Mediterranean (1950–2000). Theor. Appl. Climatol. 2006, 83, 89–106. [Google Scholar] [CrossRef]
- Barkhordarian, A.; Von Storch, H.; Zorita, E. Anthropogenic forcing is a plausible explanation for the observed surface specific humidity trends over the Mediterranean area. Geophys. Res. Lett. 2012, 39, L19706. [Google Scholar] [CrossRef] [Green Version]
- Lelieveld, J.; Hadjinicolaou, P.; Kostopoulou, E.; Chenoweth, J.; El Maayar, M.; Giannakopoulos, C.; Hannides, C.; Lange, M.A.; Tanarhte, M.; Tyrlis, E.; et al. Climate change and impacts in the Eastern Mediterranean and the Middle East. Clim. Chang. 2012, 114, 667–687. [Google Scholar] [CrossRef] [Green Version]
- Harris, I.; Osborn, T.J.; Jones, P.; Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 2020, 7, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Schneider, U.; Finger, P.; Meyer-Christoffer, A.; Rustemeier, E.; Ziese, M.; Becker, A. Evaluating the hydrological cycle over land using the newly-corrected precipitation climatology from the Global Precipitation Climatology Centre (GPCC). Atmosphere 2017, 8, 52. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. 2001, 106, 7183–7192. [Google Scholar] [CrossRef]
- Wang, B.; Zheng, L.; Liu, D.L.; Ji, F.; Clark, A.; Yu, Q. Using multi-model ensembles of CMIP5 global climate models to reproduce observed monthly rainfall and temperature with machine learning methods in Australia. Int. J. Climatol. 2018, 38, 4891–4902. [Google Scholar] [CrossRef]
- Kusunoki, S.; Yoshimura, J.; Yoshimura, H.; Noda, A.; Oouchi, K.; Mizuta, R. Change of Baiu rain band in global warming projection by an atmospheric general circulation model with a 20-km grid size. J. Meteorol. Soc. Jpn. 2006, 84, 581–611. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Jiang, Z.; Li, L. Probabilistic projections of climate change over China under the SRES A1B scenario using 28 AOGCMs. J. Clim. 2011, 24, 4741–4756. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Jiang, Z.; Li, J.; Li, W.; Sun, C.; Li, L. Does CMIP6 Inspire More Confidence in Simulating Climate Extremes over China? Adv. Atmos. Sci. 2020, 37, 1119–1132. [Google Scholar] [CrossRef]
- Ngoma, H.; Wen, W.; Ayugi, B.; Babaousmail, H.; Karim, R.; Ongoma, V. Evaluation of the Global Climate Models in CMIP6 in simulating mean precipitation over Uganda. Int. J. Climatol. 2021, 1–26. [Google Scholar] [CrossRef]
- Ayugi, B.; Dike, V.; Ngoma, H.N.; Babaousmail, H.; Ongoma, V. Future Changes in Precipitation Extrems over East Africa based on CMIP6 Projections. Preprints 2021, 2021010112. [Google Scholar] [CrossRef]
- Mann, H.B. Non-Parametric Test Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Appendix: Mann-Kendall Trend Tests; Oxford University Press: Oxford, UK, 1975; p. 202. [Google Scholar]
- Hamed, K.H.; Ramachandra Rao, A. A modified Mann-Kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Partal, T.; Kahya, E. Trend analysis in Turkish precipitation data. Hydrol. Process. 2006, 20, 2011–2026. [Google Scholar] [CrossRef]
- Gajbhiye, S.; Meshram, C.; Mirabbasi, R.; Sharma, S.K. Trend analysis of rainfall time series for Sindh river basin in India. Theor. Appl. Climatol. 2016, 125, 593–608. [Google Scholar] [CrossRef]
- Liuzzo, L.; Bono, E.; Sammartano, V.; Freni, G. Analysis of spatial and temporal rainfall trends in Sicily during the 1921–2012 period. Theor. Appl. Climatol. 2016, 126, 113–129. [Google Scholar] [CrossRef]
- Ongoma, V.; Chen, H.; Gao, C.; Nyongesa, A.M.; Polong, F. Future changes in climate extremes over Equatorial East Africa based on CMIP5 multimodel ensemble. Nat. Hazards 2018, 90, 901–920. [Google Scholar] [CrossRef]
- Ayugi, B.O.; Tan, G. Recent trends of surface air temperatures over Kenya from 1971 to 2010. Meteorol. Atmos. Phys. 2019, 131, 1401–1413. [Google Scholar] [CrossRef]
- Mumo, L.; Yu, J.; Ayugi, B. Evaluation of spatiotemporal variability of rainfall over Kenya from 1979 to 2017. J. Atmos. Solar Terr. Phys. 2019, 194, 105097. [Google Scholar] [CrossRef]
- Karim, R.; Tan, G.; Ayugi, B.; Babaousmail, H.; Liu, F. Evaluation of historical CMIP6 model simulations of seasonal mean temperature over Pakistan during 1970-2014. Atmosphere 2020, 11, 1005. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Eyring, V.; Bock, L.; Lauer, A.; Righi, M.; Schlund, M.; Andela, B.; Arnone, E.; Bellprat, O.; Carvalhais, N.; Cionni, I.; et al. Earth System Model Evaluation Tool (ESMValTool) v2.0—An extended set of large-scale diagnostics for quasi-operational and comprehensive evaluation of Earth system models in CMIP. Geosci. Model Dev. 2020, 13, 3383–3438. [Google Scholar] [CrossRef]
- Ngoma, H.; Wen, W.; Ojara, M.; Ayugi, B. Assessing current and future spatiotemporal precipitation variability and trends over Uganda, East Africa based on CHIRPS and Regional Climate Models Datasets. Meteorol. Atmos. Phys. 2021. [Google Scholar] [CrossRef]
- IPCC. Summary for Policymakers. In Global Warming of 1.5°C. An IPCC Special Report on the Impacts of Global Warming of 1.5°C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P.R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Eds.; IPCC: Geneva, Switzerland, 2018; in press; Available online: https://www.ipcc.ch/site/assets/uploads/sites/2/2019/05/SR15_SPM_version_report_LR.pdf (accessed on 15 December 2020).
- Giannakopoulos, C.; Hadjinicolaou, P.; Zerefos, C.; Demosthenous, G. Changing energy requirements in the Mediterranean under changing climatic conditions. Energies 2009, 2, 805–815. [Google Scholar] [CrossRef] [Green Version]
- Mathbout, S.; Lopez-Bustins, J.A.; Royé, D.; Martin-Vide, J.; Bech, J.; Rodrigo, F.S. Observed Changes in Daily Precipitation Extremes at Annual Timescale Over the Eastern Mediterranean During 1961–2012. Pure Appl. Geophys. 2018, 175, 3875–3890. [Google Scholar] [CrossRef]
- Trigo, R.M.; Vaquero, J.M.; Stothers, R.B. Witnessing the impact of the 1783–1784 Laki eruption in the Southern Hemisphere. Clim. Chang. 2010, 99, 535–546. [Google Scholar] [CrossRef]
- Kelley, C.P.; Mohtadi, S.; Cane, M.A.; Seager, R.; Kushnir, Y. Climate change in the Fertile Crescent and implications of the recent Syrian drought. Proc. Natl. Acad. Sci. USA 2015, 112, 3241–3246. [Google Scholar] [CrossRef] [Green Version]
- Khomsi, K.; Mahe, G.; Tramblay, Y.; Sinan, M.; Snoussi, M. Trends in rainfall and temperature extremes in Morocco. Nat. Hazards Earth Syst. Sci. Discuss. 2015, 3, 1175–1201. [Google Scholar] [CrossRef] [Green Version]
- Tan, G.; Ayugi, B.; Ngoma, H.; Ongoma, V. Projections of future meteorological drought events under representative concentration pathways (RCPs) of CMIP5 over Kenya, East Africa. Atmos. Res. 2020, 246, 105112. [Google Scholar] [CrossRef]
- Li, Y.; Yan, D.; Peng, H.; Xiao, S. Evaluation of precipitation in CMIP6 over the Yangtze River Basin. Atmos. Res. 2020, 253, 105406. [Google Scholar] [CrossRef]
- Ahmed, K.; Sachindra, D.A.; Shahid, S.; Demirel, M.C.; Chung, E.S. Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics. Hydrol. Earth Syst. Sci. 2019, 23, 4803–4824. [Google Scholar] [CrossRef] [Green Version]
Model | Annual | DJF | ||||
---|---|---|---|---|---|---|
Mean | Z-Score | Slope (mm/yr) | Mean | Z-Score | Slope (mm/yr) | |
CRU | 147.73 | −2.03 * | −0.22 | 60.20 | −2.32 * | −0.12 |
GPCC | 154.50 | −1.80 * | −0.21 | 62.44 | −2.06 * | −0.13 |
BCC-CSM2-MR | 166.76 | 0.42 | 0.04 | 47.15 | 0.6 | 0.04 |
BCC-ESM1 | 145.4 | −2.1 * | −0.23 | 43.9 | −1.2 | −0.07 |
CanESM5 | 156.45 | −0.19 | −0.02 | 37.23 | 0.11 | 0.01 |
CESM2-WACCM | 122.35 | −0.97 | −0.12 | 39.52 | −0.7 | −0.06 |
CESM2 | 155.71 | 0.89 | 0.11 | 55.11 | 0.74 | 0.05 |
CNRM-CM6-1 | 185.38 | 0.94 | 0.18 | 64.37 | −0.05 | −0.01 |
CNRM-ESM2-1 | 172.55 | 0.38 | 0.06 | 80.92 | −1.19 | −0.11 |
EC-Earth3-Veg | 122.78 | 0.46 | 0.03 | 51.26 | 0.9 | 0.05 |
GFDL-CM4 | 164.98 | −1.01 | −0.14 | 61.82 | −0.82 | −0.05 |
GFDL-ESM4 | 151.87 | −0.83 | −0.11 | 75.09 | −2.35 * | −0.17 |
IPSL-CM6A-LR | 136.96 | 0.77 | 0.11 | 47.29 | −0.23 | −0.02 |
MRI-ESM2-0 | 173.54 | 0.33 | 0.08 | 60.17 | 0.6 | 0.04 |
NorESM2-LM | 134.73 | 0.57 | 0.06 | 46.06 | −0.61 | −0.05 |
SAMO-UNICON | 151.96 | −0.76 | −0.12 | 48.9 | −0.41 | −0.03 |
UKESM1-0-LL | 151.41 | −0.12 | −0.02 | 59.12 | 0.18 | 0.01 |
Ensemble | 154.95 | −1.05 | −0.04 | 55.59 | −1.16 | −0.02 |
Model | R2 | RMSE(mm) | Bias (mm) | T Stat | TSS |
---|---|---|---|---|---|
BCC-CSM2-MR | 0.41 | 5.78 | 0.56 | 1.62 | 0.67 |
BCC-ESM1 | 0.29 | 6.55 | −0.98 | −2.86 * | 0.58 |
CanESM5 | 0.14 | 7.31 | −1.96 | −6.13 * | 0.43 |
CESM2-WACCM | 0.35 | 6.92 | 0.95 | 2.47 * | 0.62 |
CESM2 | 0.36 | 6.69 | 0.8 | 2.11 * | 0.64 |
CNRM-CM6-1 | 0.37 | 9.6 | 5.29 | 11.9 * | 0.58 |
CNRM-ESM2-1 | 0.37 | 9.28 | 4.79 | 10.86 * | 0.58 |
EC-Earth3-Veg | 0.58 | 5.22 | −1.26 | −3.35 * | 0.78 |
GFDL-CM4 | 0.49 | 6.44 | 1.85 | 4.6 * | 0.70 |
GFDL-ESM4 | 0.45 | 7.08 | 2.87 | 7.16 * | 0.68 |
IPSL-CM6A-LR | 0.44 | 5.73 | −0.97 | −2.82 * | 0.68 |
MRI-ESM2-0 | 0.36 | 7.95 | 3.21 | 7.83 * | 0.61 |
NorESM2-LM | 0.43 | 6.2 | −2.05 | −5.68 * | 0.69 |
SAM0-UNICON | 0.04 | 8.62 | 1.14 | 3.29 * | 0.36 |
UKESM1-0-LL | 0.52 | 5.96 | 0.23 | 0.58 | 0.72 |
Ensemble | 0.66 | 4.36 | 1.23 | 3.69 * | 0.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Babaousmail, H.; Hou, R.; Ayugi, B.; Ojara, M.; Ngoma, H.; Karim, R.; Rajasekar, A.; Ongoma, V. Evaluation of the Performance of CMIP6 Models in Reproducing Rainfall Patterns over North Africa. Atmosphere 2021, 12, 475. https://doi.org/10.3390/atmos12040475
Babaousmail H, Hou R, Ayugi B, Ojara M, Ngoma H, Karim R, Rajasekar A, Ongoma V. Evaluation of the Performance of CMIP6 Models in Reproducing Rainfall Patterns over North Africa. Atmosphere. 2021; 12(4):475. https://doi.org/10.3390/atmos12040475
Chicago/Turabian StyleBabaousmail, Hassen, Rongtao Hou, Brian Ayugi, Moses Ojara, Hamida Ngoma, Rizwan Karim, Adharsh Rajasekar, and Victor Ongoma. 2021. "Evaluation of the Performance of CMIP6 Models in Reproducing Rainfall Patterns over North Africa" Atmosphere 12, no. 4: 475. https://doi.org/10.3390/atmos12040475
APA StyleBabaousmail, H., Hou, R., Ayugi, B., Ojara, M., Ngoma, H., Karim, R., Rajasekar, A., & Ongoma, V. (2021). Evaluation of the Performance of CMIP6 Models in Reproducing Rainfall Patterns over North Africa. Atmosphere, 12(4), 475. https://doi.org/10.3390/atmos12040475