High NO2 Concentrations Measured by Passive Samplers in Czech Cities: Unresolved Aftermath of Dieselgate?
Abstract
:Highlights
- NO2 measured by 104 passive samplers at 65 places in Prague, corrected mean 36 µg/m3
- NO2 increases with traffic intensity corrected for intersections and hills
- High NO2/NOx ratios and excess NOx emissions from diesel cars a culprit
- Not much improvement after “Dieselgate”
- Reductions below 40 µg/m3 suggested based on health evidence literature review
1. Introduction
2. Review of Trends and Shortcomings in NO2 and NOx Emissions from Vehicles
3. Review of the Impact of NO2 to Central Nervous System in Children and Adults
- Prenatal exposure impaired attentional function at the age of 4–5 years;
- Induce neurobehavioral changes in children at the age of 8–10 years;
- Affect attention process in children aged 8–12 years and induced changes are persistent for another 3.5 years;
- Increase major depressive disorder at age 18;
- Increase the incidence of dementia;
- Exposure to NO2 is associated with reduced total gray-matter.
4. Measurement of NO2 in Prague by Passive Samplers
4.1. Validation by Comparison with the Air Quality Monitoring Network
4.2. Comparison of NO2 during Passive Samplers Deployment with Long-Term Averages
4.3. Effects of Traffic
5. Effects of Travel Restrictions on Ambient NO and NO2 Concentrations
- Legerova street, considered an urban hotspot, with about 45 thousand vehicles traveling daily in one direction (with similar traffic volumes in the opposite direction on a parallel street), primarily (97–98%) light-duty vehicles (trucks over 12 tons are restricted from entering inner Prague and trucks over 6 tons are restricted in the Prague historical district);
- Vysočanská street and Průmyslová street, two traffic stations located on heavily traveled main roads used by local and transit truck traffic;
- Náměstí Republiky, urban background station in a historical city center, on the border of pedestrian area
- Kobylisy, a station in a suburban residential neighborhood
- For comparison, a rural background station in Košetice, serving as the Czech national reference station, was used as a reference.
6. Discussion
7. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Health Effect Institute. State of Global Air Report. 2018. Available online: https://www.stateofglobalair.org/sites/default/files/soga-2018-report.pdf (accessed on 8 February 2021).
- European Environment Agency (EEA). Air Quality in Europe; European Environment Agency: Copenhagen, Denmark, 2020; Available online: https://www.eea.europa.eu/publications/air-quality-in-europe-2020-report (accessed on 8 February 2021).
- World Bank. The Cost of Pollution: Strengthening the Economic Case for Action; World Bank: Washington, DC, USA, 2016; Available online: https://openknowledge.worldbank.org/bitstream/handle/10986/25013/108141.pdf?sequence=4&isAllowed=y (accessed on 8 February 2021).
- Hesterberg, T.W.; Long, C.M.; Sax, S.N.; Lapin, C.A.; McClellan, R.O.; Bunn, W.B.; Valberg, P.A. Particulate matter in new technology diesel exhaust (NTDE) is quantitatively and qualitatively very different from that found in traditional diesel exhaust (TDE). J. Air Waste Manag. Assoc. 2011, 61, 894–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunova, I.; Baumelt, V.; Modlik, M. Long-term trends in nitrogen oxides at different types of monitoring stations in the Czech Republic. Sci. Total Environ. 2020, 699, 134378. [Google Scholar] [CrossRef]
- Georgoulias, A.K.; van der, A.J.R.; Stammes, P.; Boersma, K.F.; Eskes, H.J. Trends and trend reversal detection in 2 decades of tropospheric NO2 satellite observations. Atmos. Chem. Phys. 2019, 19, 6269–6294. [Google Scholar] [CrossRef] [Green Version]
- Casquero-Vera, J.A.; Lyamani, H.; Titos, G.; Borras, E.; Olmo, F.J.; Alados-Arboledas, L. Impact of primary NO2 emissions at different urban sites exceeding the European NO2 standard limit. Sci. Total Environ. 2019, 646, 1117–1125. [Google Scholar] [CrossRef] [PubMed]
- Wild, R.J.; Dubé, W.P.; Aikin, K.C.; Eilerman, S.J.; Neuman, J.A.; Peischl, J.; Ryerson, T.B.; Brown, S.S. On-road measurements of vehicle NO2/NOx emission ratios in Denver, Colorado, USA. Atmos. Environ. 2017, 148, 182–189. [Google Scholar] [CrossRef]
- Grange, S.K.; Lewis, A.C.; Moller, S.J.; Carslaw, D.C. Lower vehicular primary emissions of NO2 in Europe than assumed in policy projections. Nat. Geosci. 2017, 10, 914–918. [Google Scholar] [CrossRef]
- Zeldovich, Y.B. The Oxidation of Nitrogen in Combustion Explosions. Acta Physicochim. 1946, 21, 577–628. [Google Scholar]
- Lavoie, G.A.; Heywood, J.B.; Keck, J.C. Experimental and Theoretical Study of Nitric Oxide Formation in Internal Combustion Engines. Combust. Sci. Technol. 1970, 1, 313–326. [Google Scholar] [CrossRef]
- Gutzwiller, L.; Arens, F.; Baltensperger, U.; Gaggeler, H.W.; Ammann, M. Significance of Semivolatile Diesel Exhaust Organics for Secondary HONO Formation. Environ. Sci. Technol. 2002, 36, 677–682. [Google Scholar] [CrossRef]
- Kurtenbach, R.; Becker, K.H.; Gomes, J.A.G.; Kleffmann, J.; Lorzer, J.C.; Spittler, M.; Wiesen, P.; Ackermann, R.; Geyer, A.; Platt, U. Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel. Atmos. Environ. 2001, 35, 3385–3394. [Google Scholar] [CrossRef]
- Heeb, N.V.; Zimmerli, Y.; Czerwinski, J.; Schmid, P.; Zennegg, M.; Haag, R.; Seiler, C.; Wichser, A.; Ulrich, A.; Honegger, P.; et al. Reactive nitrogen compounds (RNCs) in exhaust of advanced PM–NOx abatement technologies for future diesel applications. Atmos. Environ. 2011, 45, 3203–3209. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley and Sons: Hoboken, NJ, USA, 1998. [Google Scholar]
- Mooney, J.J.; Thompson, C.E.; Dettling, J.C. Three-Way Conversion Catalysts Part of the New Emission Control System. SAE Trans. 1977, 86, 1553–1562. [Google Scholar]
- Falk, C.D.; Mooney, J.J. Three—Way Conversion Catalysts: Effect of Closed—Loop Feed—Back Control and Other Parameters on Catalyst Efficiency. SAE Trans. 1980, 89, 1822–1832. [Google Scholar]
- Hardin, G. The tragedy of the commons. Science 1968, 162, 1243–1248. [Google Scholar] [CrossRef] [Green Version]
- Thompson, G.; Carder, D.; Clark, N.; Gautam, M. Summary of In-use NOx Emissions from Heavy-Duty Diesel Engines. SAE Int. J. Commer. Veh. 2009, 1, 162–184. [Google Scholar] [CrossRef]
- United States Department of Justice (USDOJ). Clean Air Act Diesel Engine Cases. 2015. Available online: https://www.justice.gov/enrd/diesel-engines (accessed on 2 February 2021).
- United States Code of Federal Regulations (US CFR). Volume 40, Part § 86.1370: Not-To-Exceed Test Procedures. 2000. As Amended by Subsequent Regulations. Available online: https://www.law.cornell.edu/cfr/text/40/86.1370 (accessed on 18 May 2021).
- Gieshaskiel, B.; Gioria, R.; Carriero, M.; Lahde, T.; Forloni, F.; Perujo Mateos del Parque, A.; Martini, G.; Bissi, L.M.; Terenghi, R. Emission Factors of a Euro VI Heavy-duty Diesel Refuse Collection Vehicle. Sustainability 2019, 11, 1067. [Google Scholar] [CrossRef] [Green Version]
- Suarez-Bertoa, R.; Valverde, V.; Clairotte, M.; Pavlovic, J.; Giechaskiel, B.; Franco, V.; Kregar, Z.; Astorga-Llorens, M. On-road emissions of passenger cars beyond the boundary conditions of the real-driving emissions test. Environ. Res. 2019, 176, 108572. [Google Scholar] [CrossRef]
- Quiros, D.C.; Thiruvengadam, A.; Pradhan, S.; Besch, M.; Thiruvengadam, P.; Demirgok, B.; Carder, D.; Oshinuga, A.; Huai, T.; Hu, S. Real-world emissions from modern heavy-duty diesel, natural gas, and hybrid diesel trucks operating along major California freight corridors. Emiss. Control Sci. Technol. 2016, 2, 156–172. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y.; Yang, J.; Cocker, D., 3rd; Karavalakis, G.; Johnson, K.C.; Durbin, T.D. Characterizing emission rates of regulated pollutants from model year 2012 + heavy-duty diesel vehicles equipped with DPF and SCR systems. Sci. Total Environ. 2018, 619–620, 765–771. [Google Scholar] [CrossRef] [Green Version]
- Grigoratos, T.; Fontaras, G.; Giechaskiel, B.; Zacharof, N. Real world emissions performance of heavy-duty Euro VI diesel vehicles. Atmos. Environ. 2019, 201, 348–359. [Google Scholar] [CrossRef]
- Skacel, J.; Vojtisek, M.; Beranek, V.; Pechout, M. Black Sheep—Detecting Polluting Vehicles on the Road Using Roadside Particle Measurement. In Proceedings of the ETH Conference on Combustion Generated Nanoparticles, Zurich, Switzerland, 18–21 June 2018; Available online: https://nanoparticles.ch/archive/2018_Skacel_PO.pdf (accessed on 2 February 2021).
- Vojtisek-Lom, M.; Fenkl, M.; Dufek, M.; Mares, J. Off-Cycle, Real-World Emissions of Modern Light Duty Diesel Vehicles; SAE International: Warrendale, PA, USA, 2009. [Google Scholar] [CrossRef]
- Weiss, M.; Bonnel, P.; Kuhlwein, J.; Provenza, A.; Lambrecht, U.; Alessandrini, S.; Carriero, M.; Colombo, R.; Forni, F.; Lanappe, G.; et al. Will Euro 6 reduce the NOx emissions of new diesel cars?—Insights from on-road tests with Portable Emissions Measurement Systems (PEMS). Atmos. Environ. 2012, 62, 657–665. [Google Scholar] [CrossRef]
- Ligterink, N.; Kadijk, G.; Mensch, P.; van Hausberger, S.; Rexeis, M. Investigations and Real World Emission Performance of Euro 6 Light-Duty Vehicles; Report TNO 2013 R11891; TNO: The Hague, The Netherlands, 2013; p. 53. [Google Scholar]
- Franco, V.; Sanchez, F.P.; German, J.; Mock, P. Real-Word Exhaust Emissions from Modern Diesel Cars a Meta-Analysis of PEMS Emissions Data from EU (EURO 6) and US (TIER 2 BIN 5/ULEV II) Diesel Passenger Cars; White Paper; International Council Clean on Transportation (ICCT): Berlin, Germany, 2014. [Google Scholar]
- Yang, L.; Franco, V.; Mock, P.; Kolke, R.; Zhang, S.; Wu, Y.; German, J. Experimental Assessment of NOx Emissions from 73 Euro 6 Diesel Passenger Cars. Environ. Sci. Technol. 2015, 49, 14409–14415. [Google Scholar] [CrossRef]
- Olsen, D.B.; Kohls, M.; Arney, G. Impact of oxidation catalysts on exhaust NO2/NOx ratio from lean-burn natural gas engines. J. Air Waste Manag. Assoc. 2010, 60, 867–874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carslaw, D.C. Evidence of an increasing NO2/NOX emissions ratio from road traffic emissions. Atmos. Environ. 2005, 39, 4793–4802. [Google Scholar] [CrossRef]
- Carslaw, D.; Rhys-Tyler, G. Remote Sensing of NO2 Exhaust Emissions from Road Vehicles: A Report to the City of London Corporation and London Borough of Ealing; DEFRA: London, UK, 2013. [Google Scholar]
- Preble, C.V.; Harley, R.A.; Kirchstetter, T.W. Measuring Real-World Emissions from the On-Road Heavy-Duty Truck Fleet; University of California: Berkeley, CA, USA, 2019. [Google Scholar]
- Vojtisek-Lom, M.; Beranek, V.; Klir, V.; Jindra, P.; Pechout, M.; Vorisek, T. On-road and laboratory emissions of NO, NO2, NH3, N2O and CH4 from late-model EU light utility vehicles: Comparison of diesel and CNG. Sci. Total Environ. 2018, 616–617, 774–784. [Google Scholar] [CrossRef]
- Pechout, M.; Kotek, M.; Jindra, P.; Macoun, D.; Hart, J.; Vojtisek-Lom, M. Comparison of hydrogenated vegetable oil and biodiesel effects on combustion, unregulated and regulated gaseous pollutants and DPF regeneration procedure in a Euro6 car. Sci. Total Environ. 2019, 696, 133748. [Google Scholar] [CrossRef]
- Singh, J. Nitogene dioxide exposure alters neonatal development. Neurotoxicology 1988, 9, 545–549. [Google Scholar]
- Wang, S.Q.; Zhang, J.L.; Zeng, X.D.; Zeng, Y.M.; Wang, S.C.; Chen, S.Y. Association of traffic-related air pollution with children´s neurobehavioral functions in Quanzhou, China. Environ. Health Perspect. 2009, 117, 1612–1618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guxens, M.; Aguilera, I.; Ballester, F.; Estarlich, M.; Fernandez-Somoano, A.; Lertxundi, A.; Lertxundi, N.; Mendez, M.A.; Tardon, A.; Vrijheid, M.; et al. Prenatal exposure to residential air pollution and infant mental development: Modulation by antioxidants and detoxification factors. Environ. Health Perspect. 2012, 120, 144–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, E.; Park, H.; Hong, Y.-C.; Ha, M.; Kim, Y.; Kim, B.N.; Kim, Y.; Roh, Y.M.; Lee, B.E.; Ryu, J.M.; et al. Prenatal exposure to PM10 and NO2 and children’s neurodevelopment from birth to 24 months of age: Mothers and Children Environmental Health (MOCEH) study. Sci. Total Environ. 2014, 481, 439–445. [Google Scholar] [CrossRef]
- Lertxundi, A.; Baccini, M.; Letxundi, N.; Fano, E.; Aranbarri, A.; Martinez, M.D.; Ayerdi, M.; Alvarez, J.; Santa-Marina, L.; Dorronsoro, M.; et al. Exposure to fine particle matter, nitrogen dioxide and benzene during pregnancy and cognitive and psychomotor developments in children at 15 months of age. Environ. Int. 2015, 80, 33–40. [Google Scholar] [CrossRef]
- Sunyer, J.; Esnaola, M.; Alvarez-Pedrerol, M.; Forns, J.; Rivas, I.; Lopez-Vicente, M.; Suades-Gonzalez, E.; Foraster, M.; Garcia-Esteban, R.; Basagana, X.; et al. Association between traffic-related air pollution in schools and cognitive development in primary school children: A prospective cohort study. PLoS Med. 2015, 12, e1001792. [Google Scholar] [CrossRef] [PubMed]
- Pujol, J.; Martinez-Vilavella, G.; Macia, D.; Fenoll, R.; Alvarez-Pedrerol, M.; Rivas, I.; Forns, J.; Blanco-Hinojo, L.; Capellades, J.; Querol, X.; et al. Traffic pollution exposure is associated with altered brain connectivity in school children. Neuroimage 2016, 129, 175–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forns, J.; Dadvand, P.; Foraster, M.; Alvarez-Pedrerol, M.; Rivas, I.; Lopez-Vicente, M.; Suades-Gonzalez, E.; Garcia-Esteban, R.; Esnaola, M.; Cirach, M. Traffic-related air pollution, noise at school, and behavioral problems in Barcelona schoolchildren: A cross-sectional study. Environ. Health Perspect. 2016, 124, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Min, J.; Min, K. Exposure to ambient PM10 and NO2 and the incidence of attention-deficit hyperactivity disorder in childhood. Environ. Int. 2017, 99, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Sentis, A.; Sunyer, J.; Dalmau-Bueno, A.; Andiarena, A.; Ballester, F.; Ciracha, M.; Estarlich, M.; Fernandez-Somoano, A.; Ibarluzea, J.; Iniguez, C.; et al. Prenatal and postnatal exposure to NO2 and child attentional function at 4–5 years of age. Environ. Int. 2017, 106, 170–177. [Google Scholar] [CrossRef] [Green Version]
- Sunyer, J.; Suades-Gonzales, E.; Garcia-Esteban, R.; Rivas, I.; Pujol, J.; Alvarez-Pedrerol, M.; Forns, J.; Querol, X.; Basagana, X. Traffic-related air pollution and attention in primary school children. Short-term association. Epidemiology 2017, 28, 181–189. [Google Scholar] [CrossRef] [Green Version]
- Forns, J.; Dadvand, P.; Esnaola, M.; Alvarez-Pedrerol, M.; Lopez-Vicente, M.; Garcia-Esteban, R.; Cirach, M.; Basagana, X.; Guxens, M.; Sunyer, J. Longitudinal association between air pollution exposure at school and cognitive development in school children over a period of 3.5 years. Environ. Res. 2017, 159, 416–421. [Google Scholar] [CrossRef]
- Vert, C.; Sanchez-Benavides, G.; Martinez, D.; Gotsens, X.; Gramunt, N.; Cirach, M.; Molinuevo, J.L.; Sunyer, J.; Nieuwenhuijsen, M.J.; Crous-Bou, M.; et al. Effect of long-term exposure to air pollution on anxiety and depression in adults: A cross-sectional study. Int. J. Hyg. Environ. Health 2017, 220, 1074–1080. [Google Scholar] [CrossRef]
- Alemany, S.; Vilor-Tejedor, N.; Garcia-Esteban, R.; Bustamante, M.; Dadvand, P.; Esnaola, M.; Mortamais, M.; Forns, J.; van Drooge, B.L.; Alvarez-Pedrerol, M.; et al. Traffic-related air pollution, APOE ε4 status, and neurodevelopmental outcomes among school cildren enrolled in the BREATHE project (Catalonia, Spain). Environ. Health Perspect. 2018, 126, 087001. [Google Scholar] [CrossRef] [Green Version]
- Carey, I.M.; Anderson, H.R.; Atkinson, R.W.; Beevers, S.; Cook, D.G.; Strachan, D.P.; Dajnak, D.; Gulliver, J.; Kelly, F.J. Are noise and air pollution related to the incidence of dementia? A cohort study in London, England. BMJ Open 2018, 8, e022404. [Google Scholar] [CrossRef] [Green Version]
- Roberts, S.; Arseneault, L.; Barratt, B.; Danese, A.; Odgers, C.L.; Moffitt, T.E.; Reuben, A.; Kelly, F.J.; Fisher, H.L. Exploration of NO2 and PM2.5 air pollution and mental health problems using high-resolution data in London-based children from a UK longitudinal cohort study. Psychiatry Res. 2019, 272, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Lertxundi, A.; Andiarena, A.; Martinez, M.D.; Ayerdi, M.; Murcia, M.; Estarlich, M.; Guxens, M.; Sunyer, J.; Julvez, J.; Ibarluzea, J. Prenatal exposure to PM2.5 and NO2 and sex-dependent infant cognitive and motor development. Environ. Res. 2019, 174, 114–121. [Google Scholar] [CrossRef]
- Jorcano, A.; Lubczynska., M.J.; Pierotti, L.; Altung, H.; Ballester, F.; Cesaroni, G.; El Marroun, H.; Fernandez-Somoano, A.; Freire, C.; Hanke, W.; et al. Prenatal and postnatal exposure to air pollution and emotional and aggressive symptoms in children from 8 European birth cohorts. Environ. Int. 2017, 131, 104927. [Google Scholar] [CrossRef] [PubMed]
- Loftus, C.T.; Ni, Y.; Szpiro, A.A.; Hazlehurst, M.F.; Tylavsky, F.A.; Bush, N.R.; Sathyanarayana, S.; Carroll, K.N.; Young, M.; Karr, C.J.; et al. Exposure to ambient air pollution and early childhood behavior: A longitudinal cohort study. Environ. Res. 2020, 183, 109075. [Google Scholar] [CrossRef] [PubMed]
- Kulick, E.R.; Wellenius, G.A.; Boehma, A.K.; Joyce, N.R.; Schupf, N.; Kaufman, J.D.; Mayeux, R.; Sacco, R.L.; Manly, J.J.; Elkind, M.S.V. Long-term exposure to air pollution and trajectories of cognitive decline among older adults. Neurology 2020, 94, e1782–e1792. [Google Scholar] [CrossRef] [PubMed]
- Erickson, L.D.; Gale, S.D.; Anderson, J.E.; Brown, B.L.; Hedges, D.W. Association between exposure to air pollution and total gray matter and total white matter volumes in adults: A cross-sectional study. Brain Sci. 2020, 10, 164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deutsche Umwelthilfe e.V. (DUH). NO2 Report Hotspots in Germany, Czech Republic, Slovenia, Bulgaria and Serbia. October 2019. Available online: https://www.duh.de/fileadmin/user_upload/download/Projektinformation/Verkehr/Abgasalarm/NO2_Report_17_10_19.pdf (accessed on 3 May 2021).
- Palmes, E.D.; Gunnison, A.F.; DiMattio, J.; Tomczyk, C. Personal Samplerfor Nitrogen Dioxide. Am. Ind. Hyg. Assoc. J. 1976, 37, 570–577. [Google Scholar] [CrossRef]
- Passam. NO2 Passive Sampler Data Sheet and Specifications, Switzerland. Available online: https://www.passam.ch/wp-content/uploads/2020/01/en_NO2lt.pdf (accessed on 2 February 2021).
- Technická Správa Komunikací hl. m. Prahy (TSK City of Prague Highway Department). Prague Transportation Yearbook. 2019. Available online: http://www.tsk-praha.cz/static/udi-rocenka-2019-en.pdf (accessed on 7 February 2021).
- Cape, J.N. Review of the Use of Passive Diffusion Tubes for Measuring Concentrations of Nitrogen Dioxide in Air; DEFRA: London, UK, 2005. [Google Scholar]
- Buzica, D.; Gerboles, M.; Plaisance, H. The equivalence of diffusive samplers to reference methods for monitoring O3, benzene and NO2 in ambient air. J. Environ. Monit. 2008, 10, 1052–1059. [Google Scholar] [CrossRef]
- Hafkenscheid, T.; Fromage-Marriette, A.; Goelen, E.; Hangartner, M.; Pfeffer, U.; Plaisance, H.; de Santis, F.; Saunders, K.; Swaans, W.; Tang, S.; et al. Review of the Application of Diffusive Samplers for the Measurement of Nitrogen Dioxide in Ambient Air in the European Union; EUR 23793 EN; OPOCE: Luxembourg, 2009; Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC51106 (accessed on 2 May 2021).
- Heal, M.R.; Laxen, D.P.H.; Marner, B.B. Biases in the Measurement of Ambient Nitrogen Dioxide (NO2) by Palmes Passive Diffusion Tube: A Review of Current Understanding. Atmosphere 2019, 10, 357. [Google Scholar] [CrossRef] [Green Version]
- Czech Hydrometeorological Institute (CHMI)—Air Quality Division. Air Pollution and Atmospheric Deposition in Data, The Czech Republic: Annual Tabular Overview 2019: Commentary on the Summary Annual Tabular Survey. Available online: https://www.chmi.cz/files/portal/docs/uoco/isko/tab_roc/2019_enh/pdf/kom.pdf (accessed on 2 May 2021).
- Altshuller, A.P. Thermodynamic considerations in the interactions of nitrogen oxides and oxy-acids in the atmosphere. J. Air Pollut. Control. Assoc. 1956, 6, 97–100. [Google Scholar] [CrossRef] [Green Version]
- Finlayson-Pitts, B.J.; Pitts, J.N. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications; Academic Press: London, UK, 2000; p. 266. ISBN 9780122570605. [Google Scholar]
- Czech Hydrometeorological Institute (CHMI). Historical Data—Meteorology and Climatology: Monthly Observation REPORTS—Weather Records for Prague. Available online: https://www.chmi.cz/historicka-data/pocasi/mesicni-data/mesicni-prehledy-pozorovani# (accessed on 2 May 2021).
- Yang, B.; Zhang, K.M.; Xu, W.D.; Zhang, S.; Batterman, S.; Baldauf, R.W.; Deshmukh, P.; Snow, R.; Wu, Y.; Zhang, Q.; et al. On-Road Chemical Transformation as an Important Mechanism of NO2 Formation. Environ. Sci. Technol. 2018, 58, 4574–4582. [Google Scholar] [CrossRef] [PubMed]
- Richmond-Bryant, J.; Owen, R.C.; Graham, S.; Snyder, M.; McDow, S.; Oakes, M.; Kimbrough, S. Estimation of on-road NO2 concentrations, NO2/NOX ratios, and related roadway gradients from near-road monitoring data. Air Qual. Atmos. Health 2017, 10, 611–625. [Google Scholar] [CrossRef]
- Geddes, J.A.; Martin, R.V.; Boys, B.L.; van Donkelaar, A. Long-term trends worldwide in ambient NO2 concentrations inferred from satellite observations. Environ. Health Perspect. 2016, 124, 281–289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
NO2 Measurements by Passive Samplers | Sprimg Measurement Period | Concentration as Analyzed [μg/m3] | Adjusted (div 1.185) Concentrations | Traffic Vehicles/Day | Hill Climb | Inter-Section | >6 tons Excl. Zone | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Location | March–April | 30 August–29 September | 7 September–30 October | 29 September–30 October | Spring | Fall | Average | Total Vehicles | Heavy Vehicles | Adjusted | ||||
31 Budějovická | 9 March–6 April | 34 | 28 | 28 | 1 | |||||||||
32 třída 5. května 39 | 9 March–6 April | 43 | 41 | 36 | 35 | 35 | 73,818 | 2200 | 110,727 | 50% | 1 | |||
33 Na Veselí | 9 March–6 April | 49 | 41 | 41 | 35 | 38 | 15,500 | 400 | 31,000 | 100% | 1 | |||
34 Sokolská/Ječná | 9 March–6 April | 78 | 70 | 63 | 66 | 56 | 61 | 56,000 | 1700 | 280,000 | 100% | 100% | 1 | |
35 Ječná/Štěpánská | 9 March–6 April | 64 | 63 | 54 | 53 | 53 | 27,600 | 700 | 138,000 | 100% | 100% | 1 | ||
36 Jugoslávských partyzánů 27 | 9 March–6 April | 35 | 29 | 29 | 16,723 | 800 | 16,723 | |||||||
37 Na pískách/Evropská | 9 March–6 April | 52 | 56 | 44 | 48 | 46 | 40,600 | 1700 | 162,400 | 100% | ||||
38 Kafkova/Svatovítská | 9 March–6 April | 46 | 46 | 39 | 39 | 39 | 26,101 | 1000 | 104,404 | 100% | ||||
39 Svatovítská/tunel | 9 March–6 April | 31 | 34 | 26 | 29 | 27 | 36,901 | 1000 | 36,901 | |||||
40 Na Ořechovce | 9 March–6 April | 45 | 38 | 38 | 12,800 | 400 | 12,800 | |||||||
41 Dejvice train station | 9 March–6 April | 73 | 59 | 62 | 50 | 56 | 29,200 | 1400 | 131,400 | 50% | 100% | 1 | ||
42 Hradčanská (metro station) | 9 March–6 April | 34 | 36 | 29 | 30 | 30 | 18,409 | 1100 | 18,409 | 1 | ||||
43 Veletržní/Sochařská | 9 March–6 April | 50 | 47 | 43 | 40 | 41 | 22,100 | 600 | 99,450 | 50% | 100% | 1 | ||
44 Janovského/Veletržní | 9 March–6 April | 41 | 34 | 34 | 29 | 31 | 19,400 | 400 | 77,600 | 100% | 1 | |||
45 Křížovnická | 9 March–6 April | 40 | 34 | 34 | 21,000 | 500 | 21,000 | 1 | ||||||
46 Vinohradská/Flora | 9 March–6 April | 34 | 37 | 29 | 31 | 30 | 26,400 | 600 | 26,400 | |||||
47 Flora-mall (bus stop) | 9 March–6 April | 43 | 35 | 36 | 30 | 33 | 11,312 | 200 | 45,248 | 100% | ||||
48 Bělocerkevská (bus stup) | 9 March–6 April | 51 | 46 | 43 | 39 | 41 | 26,500 | 1000 | 132,500 | 100% | 100% | |||
49 Vršovická (Slavia tram stop) | 9 March–6 April | 33 | 36 | 28 | 31 | 29 | 13,900 | 600 | 55,600 | 100% | ||||
52 Rumunská/Sokolská | 9 March–6 April | 53 | 45 | 45 | 43,100 | 1300 | 129,300 | 50% | 50% | 1 | ||||
120 Severni Spořilov podchod | 13 March–24 April | 45 | 38 | 38 | 48,900 | 7200 | 73,350 | 50% | ||||||
121 Chodov/Dálnice | 13 March–24 April | 55 | 46 | 46 | 118,100 | 15,600 | 177,150 | 50% | ||||||
122 Zenklova/Na Korábě | 13 March–24 April | 39 | 30 | 33 | 25 | 29 | 13,000 | 400 | 13,000 | |||||
123 Vychovatelna (bus) | 13 March–24 April | 67 | 49 | 57 | 41 | 49 | 109,300 | 4700 | 163,950 | 50% | ||||
124 Rokoska (podchod) | 13 March–24 April | 64 | 53 | 54 | 45 | 49 | 88,561 | 4200 | 132,842 | 50% | ||||
125 V Holešovičkách 8/10 | 13 March–24 April | 51 | 45 | 43 | 38 | 40 | 88,561 | 4200 | 132,842 | 50% | ||||
126 Hotel Pawllovia | 13 March–24 April | 40 | 43 | 34 | 36 | 35 | 88,561 | 4200 | 88,561 | |||||
127 main train station | 13 March–24 April | 42 | 51 | 35 | 43 | 39 | 85,053 | 200 | 85,053 | 1 | ||||
128 Hrusická 6 (balcony) | 13 March–24 April | 21 | 18 | 18 | 0 | 0 | 0 | |||||||
129 hlavni 25 (balcony) | 13 March–24 April | 29 | 25 | 25 | 8000 | 200 | 8,000 | |||||||
130 Havni/most | 13 March–24 April | 37 | 31 | 31 | 50,487 | 7400 | 75,731 | 50% | ||||||
181 Kotevní 2 | 19 March–24 April | 32 | 27 | 27 | 26,500 | 600 | 26,500 | 1 | ||||||
182 Strakonická 21/23 | 19 March–24 April | 41 | 35 | 35 | 54,753 | 3300 | 54,753 | 1 | ||||||
183 Svornosti 19a | 19 March–24 April | 48 | 41 | 41 | 11,800 | 300 | 11,800 | 1 | ||||||
184 Zborovská 3 | 19 March–24 April | 48 | 44 | 44 | 41 | 37 | 39 | 14,500 | 300 | 58,000 | 100% | 1 | ||
185 V Botanice 4 (regional government) | 19 March–24 April | 56 | 49 | 63 | 47 | 47 | 47 | 25,028 | 500 | 100,112 | 100% | 1 | ||
186 V Botanice (bank) | 19 March–24 April | 43 | 44 | 37 | 37 | 37 | 22,000 | 500 | 88,000 | 100% | 1 | |||
187 Plzeňská 14, Hotel IBIS | 19 March–24 April | 49 | 42 | 41 | 35 | 38 | 32,700 | 700 | 130,800 | 100% | ||||
188 Radlická 14/Anděl | 19 March–24 April | 48 | 48 | 40 | 41 | 41 | 25,030 | 600 | 100,120 | 100% | ||||
189 Ostrovského | 19 March–24 April | 43 | 41 | 36 | 34 | 35 | 23,191 | 500 | 92,762 | 100% | ||||
190 Billa Karlin | 19 March–24 April | 32 | 28 | 27 | 24 | 25 | ||||||||
191 Pobřežní (bussiness center) | 19 March–24 April | 43 | 40 | 37 | 33 | 35 | 31,200 | 1200 | 31,200 | |||||
192 Pobřežní (monitoring stattion) | 19 March–24 April | 38 | 30 | 32 | 26 | 29 | 31,200 | 1200 | 31,200 | |||||
193 Negreliho viadukt | 19 March–24 April | 33 | 39 | 28 | 33 | 30 | 13,335 | 800 | 13,335 | |||||
194 Florenc (bus stop) | 19 March–24 April | 46 | 42 | 39 | 36 | 37 | 14,612 | 800 | 58,448 | 100% | ||||
195 Nám. Republiky (Kotva) | 19 March–24 April | 47 | 40 | 40 | 8300 | 300 | 33,200 | 100% | 1 | |||||
Mezibranská 3 | none | 84 | 79 | 69 | 69 | 59,645 | 1800 | 298,225 | 100% | 100% | 1 | |||
Sokolská/Ječná, Prague | none | 74 | 63 | 58 | 58 | 55,445 | 1700 | 277,225 | 100% | 100% | 1 | |||
Rumunská/Legerova, Prague | none | 62 | 52 | 48 | 48 | 45,452 | 1300 | 181,808 | 100% | 1 | ||||
Bubenská, Prague | none | 48 | 40 | 40 | 28,300 | 800 | 113,200 | 100% | ||||||
Vysočanská, Prague | none | 26 | 22 | 22 | 15,700 | 400 | 15,700 | |||||||
Vysočanská (ČHMÚ), Prague | none | 37 | 31 | 31 | 37,035 | 1600 | 148,140 | 100% | ||||||
Thámova/Sokolovská, Prague | none | 28 | 24 | 24 | ||||||||||
Radlická (ČSOB), Prague | none | 38 | 32 | 32 | ||||||||||
Radlická (Kotelna Park), Prague | none | 33 | 28 | 28 | ||||||||||
Resslova 1/3, Prague | none | 52 | 44 | 44 | 33,027 | 700 | 148,622 | 50% | 100% | |||||
Spořilov 1, Prague | none | 51 | 43 | 43 | ||||||||||
Spořilov 2, Prague | none | 34 | 28 | 28 | ||||||||||
Boční/Jihovýchodní VII, Prague | none | 28 | 24 | 24 | ||||||||||
Pankrác 1 BAUHAUS, Prague | none | 37 | 31 | 31 | 100% | |||||||||
Pankrác 2 Doudlebská, Prague | none | 29 | 25 | 25 | 100% | |||||||||
Pankrác 3 viadukt, Prague | none | 32 | 27 | 27 | 100% | |||||||||
Pankrác 4 Hvězdova 35, Prague | none | 31 | 26 | 26 | 100% | |||||||||
Radlická/Klicperova, Prague | none | 48 | 41 | 41 | 25,030 | 500 | 100,120 | 100% | ||||||
Suchdol AV ČR, Prague | none | 20 | 17 | 17 | 0 | 0 | 0 | |||||||
Suchdol AV ČR, Prague | none | 19 | 16 | 16 | 0 | 0 | 0 |
NO2 Measurements by the National Air Quality Monitoring Network | Average of 1-h Concentrations [μg/m3] | Average Concentrations | Traffic Vehicles/Day | Hill Climb | Inter-Section | >6 tons Excl. Zone | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Station | 9 March–6 April | 19 March–21 April | 30 August–29 September | 7 September–30 October | 29 September–30 October | Spring | Fall | 2016–2019 | Actual | Adjusted | ||||
Legerova | 46 | 62 | 45 | 45 | 54 | 45 | 51 | 46,300 | 1300 | 185,200 | 100% | 1 | ||
Namesti Republiky | 29 | 35 | 26 | 36 | 32 | 31 | 30 | 10,400 | 300 | 41,600 | 100% | 1 | ||
Kobylisy | 20 | 21 | 26 | 20 | 26 | 20 | 0 | 0 | 0 | |||||
Průmyslová | 31 | 32 | 30 | 32 | 30 | 31 | 35,000 | 2000 | 35,000 | |||||
Vysočanská | 29 | 37 | 31 | 33 | 31 | 35 | 37,035 | 3500 | 37,035 | |||||
Karlín | 32 | 26 | 32 | 26 | 29 | 31,200 | 1200 | 31,200 |
14 March–30 April | µg/m3, Arithmetic Mean | µg/m3, Geometric Mean | Ratio | |||||
---|---|---|---|---|---|---|---|---|
Station | Year | NO | NO2 | NOx | NO | NO2 | NOx | NO2/NOx |
Legerova | 2016 | 43.5 ± 47.2 | 55.2 ± 27.4 | 122.0 ± 95.1 | 24.8 ± 3.1 | 48.4 ± 1.7 | 91.7 ± 2.2 | 55% ± 16% |
2017 | 35.4 ± 38.6 | 46.5 ± 28.3 | 100.8 ± 84.7 | 17.1 ± 4.0 | 36.8 ± 2.1 | 67.4 ± 2.7 | 57% ± 16% | |
type: traffic | 2018 | 44.7 ± 46.2 | 59.3 ± 29.0 | 128.0 ± 94.3 | 24.6 ± 3.4 | 51.4 ± 1.8 | 95.5 ± 2.3 | 57% ± 17% |
predominantly | 2019 | 36.9 ± 38.2 | 55.0 ± 27.2 | 111.7 ± 81.2 | 21.6 ± 3.1 | 46.8 ± 1.9 | 83.9 ± 2.3 | 58% ± 14% |
light-duty < 3.5 tons | 2020 | 21.6 ± 27.7 | 43.2 ± 21.0 | 76.5 ± 59.3 | 12.2 ± 2.9 | 38.4 ± 1.6 | 60.5 ± 2.0 | 66% ± 15% |
2020 vs. 2016–2019 | −46% **** | −20% **** | −34% **** | −44% **** | −16% **** | −28% **** | +23% **** | |
Průmyslová | 2016 | 24.8 ± 40.1 | 34.6 ± 19.8 | 72.8 ± 77.2 | 9.1 ± 4.8 | 29.3 ± 1.8 | 48.7 ± 2.4 | 64% ± 20% |
2017 | 21.9 ± 33.2 | 33.4 ± 20.2 | 67.0 ± 67.9 | 8.1 ± 4.8 | 27.3 ± 1.9 | 44.3 ± 2.5 | 65% ± 19% | |
type: traffic | 2018 | 21.4 ± 35.8 | 31.8 ± 22.0 | 64.7 ± 72.4 | 6.5 ± 5.5 | 24.1 ± 2.2 | 38.1 ± 2.9 | 67% ± 20% |
all types, truck transit | 2019 | 19.7 ± 39.0 | 30.6 ± 21.3 | 60.8 ± 77.3 | 5.8 ± 5.2 | 24.3 ± 2.0 | 37.1 ± 2.6 | 69% ± 19% |
2020 | 16.0 ± 29.0 | 27.5 ± 19.4 | 52.0 ± 60.1 | 5.5 ± 4.3 | 21.0 ± 2.2 | 31.8 ± 2.7 | 69% ± 17% | |
2020 vs. 2016–2019 | −27% ** | −15% * | −22% *** | −24% **** | −20% **** | −24% **** | 6% | |
Vysočanská | 2016 | 22.7 ± 29.5 | 38.0 ± 18.9 | 72.9 ± 60.4 | 12.0 ± 3.3 | 33.5 ± 1.7 | 55.7 ± 2.1 | 63% ± 16% |
2017 | 18.4 ± 26.6 | 35.1 ± 19.1 | 63.5 ± 56.5 | 8.2 ± 3.9 | 30.3 ± 1.7 | 46.6 ± 2.2 | 68% ± 17% | |
type: traffic | 2018 | 18.8 ± 25.1 | 36.0 ± 19.9 | 64.9 ± 54.7 | 7.8 ± 4.3 | 30.5 ± 1.8 | 46.9 ± 2.3 | 68% ± 18% |
all types, truck transit | 2019 | 17.4 ± 22.3 | 34.1 ± 19.1 | 60.8 ± 49.9 | 8.7 ± 3.5 | 28.9 ± 1.8 | 45.5 ± 2.2 | 66% ± 16% |
2020 | 14.2 ± 19.9 | 33.2 ± 18.9 | 55.1 ± 45.0 | 7.0 ± 3.3 | 28.1 ± 1.8 | 41.8 ± 2.1 | 70% ± 16% | |
2020 vs. 2016–2019 | −27% *** | −7% **** | −16% **** | −23% **** | −9% **** | −14% **** | 8% | |
Náměstí | 2016 | 12.0 ± 14.0 | 20.2 ± 7.1 | 38.8 ± 26.4 | 6.9 ± 3.2 | 19.2 ± 1.4 | 33.3 ± 1.7 | 59% ± 26% |
Republiky | 2017 | 12.1 ± 12.5 | 33.1 ± 14.6 | 51.7 ± 30.8 | 9.4 ± 1.9 | 30.4 ± 1.5 | 46.0 ± 1.6 | 66% ± 15% |
2018 | 15.6 ± 19.5 | 35.2 ± 17.7 | 59.1 ± 43.7 | 9.8 ± 2.6 | 31.5 ± 1.6 | 49.1 ± 1.8 | 65% ± 18% | |
type: urban | 2019 | 10.9 ± 14.2 | 31.9 ± 15.2 | 48.7 ± 33.5 | 7.5 ± 2.1 | 28.9 ± 1.5 | 41.9 ± 1.7 | 70% ± 13% |
background | 2020 | 10.8 ± 10.6 | 27.8 ± 14.5 | 44.6 ± 28.2 | 8.0 ± 2.1 | 24.9 ± 1.6 | 38.4 ± 1.7 | 66% ± 12% |
2020 vs. 2016–2019 | −14% | −7% | −10% | −3% | −8% | −9% | 2% | |
Kobylisy | 2016 | 3.8 ± 9.3 | 10.4 ± 6.3 | 16.3 ± 19.0 | 1.2 ± 3.4 | 9.1 ± 1.7 | 11.9 ± 2.0 | 80% ± 16% |
2017 | 3.7 ± 9.4 | 14.5 ± 8.7 | 19.7 ± 19.9 | 1.5 ± 3.1 | 12.7 ± 1.7 | 15.4 ± 1.9 | 80% ± 16% | |
type: residential | 2018 | 3.7 ± 8.8 | 21.7 ± 15.9 | 27.5 ± 26.0 | 1.4 ± 3.2 | 17.2 ± 1.9 | 20.4 ± 2.1 | 86% ± 11% |
background | 2019 | 3.4 ± 8.8 | 19.6 ± 15.7 | 25.0 ± 27.1 | 1.1 ± 3.2 | 15.8 ± 1.9 | 18.4 ± 2.0 | 87% ± 14% |
2020 | 2.8 ± 5.9 | 17.3 ± 14.1 | 21.0 ± 20.8 | 1.5 ± 2.3 | 13.0 ± 2.1 | 14.8 ± 2.2 | 81% ± 14% | |
2020 vs. 2016–2019 | −22% | 4% | −5% | 14% | −2% | −8% | −6% | |
Košetice | 2016 | 0.5 ± 0.6 | 6.0 ± 2.6 | 6.8 ± 3.1 | 0.3 ± 2.0 | 5.4 ± 1.6 | 6.2 ± 1.6 | 90% ± 7% |
2017 | 0.3 ± 0.4 | 7.3 ± 3.0 | 7.8 ± 3.2 | 0.3 ± 1.8 | 6.7 ± 1.5 | 7.2 ± 1.5 | 93% ± 5% | |
national reference | 2018 | 0.3 ± 0.4 | 3.9 ± 2.7 | 4.3 ± 3.0 | 0.2 ± 2.6 | 3.1 ± 2.0 | 3.5 ± 1.9 | 90% ± 9% |
background | 2019 | 0.2 ± 0.3 | 3.6 ± 1.9 | 4.0 ± 2.1 | 0.1 ± 2.9 | 3.1 ± 1.8 | 3.5 ± 1.7 | 91% ± 9% |
outside of Prague | 2020 | 0.2 ± 0.3 | 3.1 ± 1.7 | 3.5 ± 1.9 | 0.1 ± 2.8 | 2.7 ± 1.8 | 3.0 ± 1.8 | 90% ± 9% |
2020 vs. 2016–2019 | −27% *** | −7% ** | −16% *** | −23% ** | −9% | −14% * | +8% *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vojtisek-Lom, M.; Suta, M.; Sikorova, J.; Sram, R.J. High NO2 Concentrations Measured by Passive Samplers in Czech Cities: Unresolved Aftermath of Dieselgate? Atmosphere 2021, 12, 649. https://doi.org/10.3390/atmos12050649
Vojtisek-Lom M, Suta M, Sikorova J, Sram RJ. High NO2 Concentrations Measured by Passive Samplers in Czech Cities: Unresolved Aftermath of Dieselgate? Atmosphere. 2021; 12(5):649. https://doi.org/10.3390/atmos12050649
Chicago/Turabian StyleVojtisek-Lom, Michal, Miroslav Suta, Jitka Sikorova, and Radim J. Sram. 2021. "High NO2 Concentrations Measured by Passive Samplers in Czech Cities: Unresolved Aftermath of Dieselgate?" Atmosphere 12, no. 5: 649. https://doi.org/10.3390/atmos12050649
APA StyleVojtisek-Lom, M., Suta, M., Sikorova, J., & Sram, R. J. (2021). High NO2 Concentrations Measured by Passive Samplers in Czech Cities: Unresolved Aftermath of Dieselgate? Atmosphere, 12(5), 649. https://doi.org/10.3390/atmos12050649