Adjusting CCIR Maps to Improve Local Behaviour of Ionospheric Models
Abstract
:1. Introduction
2. Methodology
3. Results and Discussion
3.1. Long-Term Improvement Based on Long-Term CCIR Files over Cyprus
3.2. Short-Term Service Level Based on Short-Term CCIR Files Over Cyprus
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Parkinson, B.W. GPS error analysis. In Global Positioning System: Theory and Applications, 1st ed.; Parkinson, B.W., Spilker, J.J., Eds.; American Institute of Aeronautics and Astronautics Inc.: Washington, DC, USA, 1996; pp. 469–483. [Google Scholar]
- Memarzadeh, Y. Ionospheric Modeling for Precise GNSS Applications. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, 2009. [Google Scholar]
- Ciraolo, L.; Azpilicueta, F.; Brunini, C.; Meza, A.; Radicella, S.M. Calibration errors on experimental slant total electron content (TEC) determined with GPS. J. Geod. 2007, 81, 111–120. [Google Scholar] [CrossRef]
- EGNOS. Available online: https://egnos-portal.eu/sites/default/files/EGNOS-open-service-sdd.PDF (accessed on 10 July 2017).
- Klobuchar, J.A. Ionospheric time-delay algorithm for single-frequency GPS users. IEEE Trans. Aerospace Electron. Syst. 1987, 3, 325–331. [Google Scholar] [CrossRef]
- European Union. Ionospheric Correction Algorithm for Galileo Single Frequency Users; Issue 1.1; June 2015; ISBN1 978-92-79-44700-6. Available online: https://www.gsc-europa.eu/sites/default/files/sites/all/files/Galileo_Ionospheric_Model.pdf (accessed on 27 May 2021)ISBN2 978-92-79-44700-6.
- Radicella, S.M. The NeQuick model genesis, uses and evolution. Ann. Geophys. 2009, 52, 417–422. [Google Scholar]
- Pignalberi, A.; Pezzopane, M.; Themens, D.R.; Haralambous, H.; Nava, B.; Coïsson, P. On the Analytical Description of the Topside Ionosphere by NeQuick: Modeling the Scale Height Through COSMIC/FORMOSAT-3 Selected Data. IEEE J. Sel. Top. Appl. Earth Obs. Rem. Sens. 2020, 13, 1867–1878. [Google Scholar] [CrossRef]
- Singh, A.K.; Haralambous, H.; Oikonomou, C. Validation and improvement of NeQuick topside ionospheric formulation using COSMIC/FORMOSAT-3 data. J. Geophys. Res. Space Phys. 2020, 126, e2020JA028720. [Google Scholar]
- Bidaine, B.; Lonchay, M.; Warnant, R. Galileo single frequency ionospheric correction: Performances in terms of position. GPS Solut. 2013, 17, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Angrisano, A.; Gaglione, S.; Gioia, C.; Massaro, M.; Troisi, S. Benefit of the NeQuick Galileo version in GNSS single-point positioning. Int. J. Navig. Obs. 2013. [Google Scholar] [CrossRef]
- Gaglione, S.; Angrisano, A.; Gioia, C.; Innac, A.; Troisi, S. NeQuick Galileo version model: Assessment of a proposed version in operational scenario. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 3611–3614. [Google Scholar]
- Aragón-Ángel, A.; Orús, R.; Hernández-Pajares, M.; Juan, J.M.; Sanz, J. Preliminary NeQuick assessment for future single frequency users of GALILEO. In Proceedings of the 6th Geomatic Week, Barcelona, Spain, 8–11 February 2005. [Google Scholar]
- Rold, P.; Golcz, R.; Moriana, C.; Leute, J. Performance of the NeQuick G iono model for single-frequency GNSS timing applications. In Proceedings of the 2016 European Frequency and Time Forum (EFTF), York, UK, 4–7 April 2016; IEEE: Piscataway, NJ, USA, 2016. [Google Scholar]
- GPS World. Performance of the Galileo Single-Frequency Ionospheric Correction during In-Orbit Validation. Available online: https://www.gpsworld.com/innovation-the-european-way/ (accessed on 2 June 2014).
- Angrisano, A.; Gaglione, S.; Gioia, C.; Troisi, S. Validity period of NeQuick (Galileo version) corrections: Trade-off between accuracy and computational load. In Proceedings of the International Conference on Localization and GNSS 2014 (ICL-GNSS 2014), Helsinki, Finland, 24–26 June 2014. [Google Scholar]
- Aragon-Angel, A.; Fortuny, J. Exploiting Galileo Ionospheric Disturbance Flags to boost NeQuick. In Proceedings of the 6th International Conference on Localization and GNSS (ICL-GNSS), Barcelona, Spain, 28–30 June 2016. [Google Scholar]
- Hanbaba, R. Statistical use of ionosonde data for IRI. Adv. Space Res. 1995, 15, 17–22. [Google Scholar] [CrossRef]
- Jones, W.B.; Gallet, R.M. Representation of diurnal and geographic variations of ionospheric data by numerical methods. Telecom. J. 1962, 29, 129–149. [Google Scholar] [CrossRef]
- Bradley, P.A. Mapping the critical frequency of the F2-layer: Part 1—Requirements and developments to around 1980. Adv. Space Res. 1990, 10, 47–56. [Google Scholar] [CrossRef]
- Haralambous, H.; Oikonomou, C. Comparison of peak characteristics of the F2 ionospheric layer obtained from the Cyprus Digisonde and IRI-2012 model during low and high solar activity period. Adv. Space Res. 2015, 56, 1927–1938. [Google Scholar] [CrossRef]
- Haralambous, H.; Bidaine, B. Comparison of GPS-derived vTEC over Cyprus with NEQUICK model. In Proceedings of the Beacon Satellite Symposium (BSS2010), Barcelona, Spain, 7–11 June 2010. [Google Scholar]
- Galkin, I.; Reinisch, B. The New ARTIST 5 for All Digisondes. Ionosonde Network Advisory Group Bulletin. 2008; Volume 69, pp. 1–8. Available online: http://www.ips.gov.au/IPSHosted/INAG/web-69/2008/artist5-inag.pdf (accessed on 20 May 2021).
- Aragon-Angel, A.; Zürn, M.; Rovira-Garcia, A. Galileo Ionospheric Correction Algorithm: An Optimization Study of NeQuick-G. Radio Sci. 2019, 54, 1156–1169. [Google Scholar] [CrossRef]
- Montenbruck, O.; Rodríguez, B. NeQuick-G performance assessment for space applications. GPS Solut. 2020, 17, 13. [Google Scholar] [CrossRef] [Green Version]
- Gularte, E.; Carpintero, D.; Jaen, J. Upgrading CCIR’s foF2 maps using available ionosondes and genetic algorithms. Adv. Space Res. 2018, 61, 1790–1802. [Google Scholar] [CrossRef]
- Press, W.; Teukolsky, S.; Vetterling, W.; Flannery, B. Numerical Recipes: The Art of Scientific Computing, 3rd ed.; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Dabove, P.; Di Pietra, V.; Piras, M. Galileo GNSS Positioning Using Mobile Devices with the Android Operating System. Int. J. Geo-Inf. 2020, 9, 220. [Google Scholar] [CrossRef] [Green Version]
Date | RMSE (Short-Term CCIR) | RMSE (Long-Term CCIR) | RMSE (Global CCIR) |
---|---|---|---|
1 April 2021 | 4.9 | 6.2 | 3.45 |
2 April 2021 | 2.0 | 5.7 | 3.8 |
3 April 2021 | 2.6 | 3.4 | 4.2 |
4 April 2021 | 2.5 | 2.3 | 5.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haralambous, H.; Leontiou, T.; Petrou, V.; Kumar Singh, A.; Charalambides, M.; Lithoxopoulos, N.; Agisilaou, A. Adjusting CCIR Maps to Improve Local Behaviour of Ionospheric Models. Atmosphere 2021, 12, 691. https://doi.org/10.3390/atmos12060691
Haralambous H, Leontiou T, Petrou V, Kumar Singh A, Charalambides M, Lithoxopoulos N, Agisilaou A. Adjusting CCIR Maps to Improve Local Behaviour of Ionospheric Models. Atmosphere. 2021; 12(6):691. https://doi.org/10.3390/atmos12060691
Chicago/Turabian StyleHaralambous, Haris, Theodoros Leontiou, Vasilis Petrou, Arun Kumar Singh, Marios Charalambides, Nikos Lithoxopoulos, and Agis Agisilaou. 2021. "Adjusting CCIR Maps to Improve Local Behaviour of Ionospheric Models" Atmosphere 12, no. 6: 691. https://doi.org/10.3390/atmos12060691
APA StyleHaralambous, H., Leontiou, T., Petrou, V., Kumar Singh, A., Charalambides, M., Lithoxopoulos, N., & Agisilaou, A. (2021). Adjusting CCIR Maps to Improve Local Behaviour of Ionospheric Models. Atmosphere, 12(6), 691. https://doi.org/10.3390/atmos12060691