Impact of Ragweed Pollen Daily Release Intensity on Long-Range Transport in Western Europe
Abstract
:1. Introduction
2. Methodology
- Statistical analysis over several years: We first want to quantify the impact of meteorological variables on ragweed pollen emissions. We compare pollen grains measurememnts with meteorological data. The studied period ranges from 2005 to 2011 with data from 9 stations.
- Definition of a new release term for a pollen emissions parametrization: Inspired by the results of the statistical scores, we define a new release term for ragweed pollen emission. The formulation is simple and only has the goal of giving more weight to the most sensitive meteorological parameters.
- Regional modelling of ragweed pollen emissions and transport: In order to quantify the interest of this new formulation, a regional simulation is performed for the period of February to October 2010. The year is selected because this is the period with the largest amount of measurement data.
2.1. The Link between the Several Measurements: Pollen and Meteorological Data
2.2. The Available Pollen Grains Measurements
2.3. Estimation of the Pollen Emissions Period
3. The Link between Pollen Concentration and Meteorology
3.1. The Modelled Meteorological Fields
3.1.1. The CORDEX Meteorological Simulations
3.1.2. The WRF Model Configuration
3.2. Comparison between Observed and Modelled 2 m Temperature
3.3. Statistics between Ragweed Pollen Concentrations and Meteorological Variables at Daily Time Scale
4. Modelling Ragweed Pollen Emission
4.1. The Ragweed Plant Fraction in Europe
4.2. The Emissions Scheme
- T TempThr (here TempThr = 273.15 K).
- daily mean T DayTempThr (here DayTempThr = 280.65 K). Note that in this model version, the daily mean 2 m temperature is the running average for the last 24 h.
- HS is lower than StartHSThr. This value is fixed here to StartHSThr = 25.0.
4.3. The Emissions Scheme
4.4. This Study
5. Results and Discussion
5.1. Statistical Scores
5.2. Time Series of Daily Variabilities
5.3. Surface Concentrations Maps
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, M.; Cecchi, L.; Skjoth, C.; Karrer, G.; Šikoparija, B. Common ragweed: A threat to environmental health in Europe. Environ. Int. 2013, 61, 115–126. [Google Scholar] [CrossRef]
- Zink, K.; Pauling, A.; Rotach, M.; Vogel, H.; Kaufmann, P.; Clot, B. EMPOL1.0: A new parameterization of pollen emission in numerical weather prediction models. Geosci. Model. Dev. 2013, 6, 1961–1975. [Google Scholar] [CrossRef] [Green Version]
- Bullock, J.M.; Chapman, D.S.; Schafer, S.; Roy, D.B.; Girardello, M.; Haynes, T.; Beal, S.; Wheeler, B.; Dickie, I.; Phang, Z.; et al. Assessing and Controlling the Spread and the Effects of Common Ragweed in Europe; Technical Report; European Commission Final Report ENV.B.2/ETU/2010/0037; European Commission: Luxembourg, 2012. [Google Scholar]
- Chapman, D.S.; Haynes, T.; Beal, S.; Essl, F.; Bullock, J.M. Phenology predicts the native and invasive range limits of common ragweed. Glob. Chang. Biol. 2014, 20, 192–202. [Google Scholar] [CrossRef] [Green Version]
- Thibaudon, M.; Šikoparija, B.; Oliver, G.; Smith, M.; Skjoth, C. Ragweed pollen source inventory for France: The second largest centre of Ambrosia in Europe. Atmos. Environ. 2014, 62–71. [Google Scholar] [CrossRef]
- Lugonja, P.; Brdar, S.; Simović, I.; Mimić, G.; Palamarchuk, Y.; Sofiev, M.; Šikoparija, B. Integration of in situ and satellite data for top-down mapping of Ambrosia infection level. Remote Sens. Environ. 2019, 235, 111455. [Google Scholar] [CrossRef]
- Matyasovszky, I.; Makra, L.; Tusnady, G.E.A. Biogeographical drivers of ragweed pollen concentrations in Europe. Theor. Appl. Clim. 2017, 133, 277–295. [Google Scholar] [CrossRef]
- Schaffner, U.; Steinbach, S.; Sun, Y.; Skjoth, C.A.; de Weger, L.A.; Lommen, S.T.; Augustinus, B.A.; Bonini, M.; Karrer, G.; Šikoparija, B.; et al. Biological weed control to relieve millions from Ambrosia allergies in Europe. Nat. Commun. 2020, 11, 1745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lake, I.R.; Jones, N.R.; Agnew, M.; Goodess, C.M.; Giorgi, F.; Hamaoui-Laguel, L.; Semenov, M.A.; Solomon, F.; Storkey, J.; Vautard, R.; et al. Climate Change and Future Pollen Allergy in Europe. Environ. Health Perspect. 2017, 125, 385–391. [Google Scholar] [CrossRef]
- Bianchi, D.; Schwemmin, D.; Wagner, W. Pollen release in the common ragweed (Ambrosia artemisiifolia). Bot. Gaz. 1959, 120, 235–243. [Google Scholar] [CrossRef]
- Holmes, R.; Bassett, I. Effect of meteorological events on ragweed pollen count. Int. J. Biometeorol. 1963, 7, 27–34. [Google Scholar] [CrossRef]
- Ogden, E.; Hayes, J.; Raynor, G. Diurnal patterns of pollen emission in Ambrosia, Phleum, Zea and Ricinus. Am. J. Bot. 1969, 56, 16–21. [Google Scholar] [CrossRef] [PubMed]
- Laaidi, M.; Thibaudon, M.; Besancenot, J.P. Two statistical approaches to forecasting the start and duration of the pollen season of Ambrosia in the area of Lyon (France). Int. J. Biometeorol. 2003, 48, 65–73. [Google Scholar] [CrossRef]
- Makra, L.; Juhasz, M.; Borsos, E.; Beczi, R. Meteorological variables connected with airborne ragweed pollen in Southern Hungary. Int. J. Biometeorol. 2004, 49, 37–47. [Google Scholar] [CrossRef]
- Kasprzyk, I. Non-native Ambrosia pollen in the atmosphere of Rzeszow (SE Poland); evaluation of the effect of weather conditions on daily concentrations and starting dates of the pollen season. Int. J. Biometeorol. 2008, 52, 341–351. [Google Scholar] [CrossRef] [PubMed]
- Helbig, N.; Vogel, B.; Vogel, H.; Fiedler, F. Numerical modelling of pollen dispersion on the regional scale. Aerobiologia 2004, 3, 3–19. [Google Scholar] [CrossRef]
- Zink, K.; Vogel, H.; Vogel, B.; Magyar, D.; Kottmeir, C. Modeling the dispersion of Ambrosia artemisiifolia L. pollen with the model system COSMO-ART. Int. J. Biometeorol. 2012, 56, 669–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makra, L.; Matyasovszky, I.; Tusnády, G.; Wang, Y.; Csépe, Z.; Bozóki, Z.; Nyúl, L.; Erostyák, J.; Bodnar, K.; Sümeghy, Z.; et al. Biogeographical estimates of allergenic pollen transport over regional scales: Common ragweed and Szeged, Hungary as a test case. Agric. For. Meteorol. 2016, 221, 94–110. [Google Scholar] [CrossRef]
- Sofiev, M.; Siljamo, P.; Ranta, H.; Rantio-Lehtimaki, A. Towards numerical forecasting of long-range air transport of birch pollen: Theoritical considerations and a feasability study. Int. J. Biometeorol. 2006, 50, 392–402. [Google Scholar] [CrossRef]
- Sofiev, M.; Siljamo, P.; Ranta, H.; Linkosalo, T.; Jeager, S.; Rasmussen, A.; Rantio-Lehtimaki, A.; Severova, E.; Kukkonen, J. A numerical model of birch pollen emission and dispersion in the atmosphere. Description of the emission module. Int. J. Biometeorol. 2013, 57, 45–58. [Google Scholar] [CrossRef] [Green Version]
- Efstathiou, C.; Isukapalli, S.; Georgopoulos, P. A mechanistic modeling system for estimating large-scale emissions and transport of pollen and co-allergens. Atmos. Environ. 2011, 45, 2260–2276. [Google Scholar] [CrossRef] [Green Version]
- Prank, M.; Chapman, D.; Bullock, J.; Belmonte, J.; Berger, U.; Dahl, A.; Jager, S.; Kovtunenko, I.; Magyar, D.; Niemela, S.; et al. An operational model for forecasting ragweed pollen release and dispersion in Europe. Agric. For. Meteorol. 2013, 182, 43–53. [Google Scholar] [CrossRef]
- Liu, L.; Solmon, F.; Vautard, R.; Hamaoui-Laguel, L.; Torma, C.Z.; Giorgi, F. Ragweed pollen production and dispersion modelling within a regional climate system, calibration and application over Europe. Biogeosciences 2016, 13, 2769–2786. [Google Scholar] [CrossRef] [Green Version]
- Sofiev, M.; Berger, U.; Prank, M.; Vira, J.; Arteta, J.; Belmonte, J.; Bergmann, K.C.; Chéroux, F.; Elbern, H.; Friese, E.; et al. MACC regional multi-model ensemble simulations of birch pollen dispersion in Europe. Atmos. Chem. Phys. 2015, 15, 81158130. [Google Scholar] [CrossRef] [Green Version]
- Sofiev, M.; Ritenberga, O.; Albertini, R.; Arteta, J.; Belmonte, J.; Bernstein, C.G.; Bonini, M.; Celenk, S.; Damialis, A.; Douros, J.; et al. Multi-model ensemble simulations of olive pollen distribution in Europe in 2014: Current status and outlook. Atmos. Chem. Phys. 2017, 17, 12341–12360. [Google Scholar] [CrossRef] [Green Version]
- Monks, P.; Granier, C.; Fuzzi, S.; Stohl, A.; Williams, M.; Akimoto, H.; Amann, M.; Baklanov, A.; Baltensperger, U.; Bey, I.; et al. Atmospheric composition change - global and regional air quality. Atmos. Environ. 2009, 43, 5268–5350. [Google Scholar] [CrossRef] [Green Version]
- Skjøth, C.; Smith, M.; Brandt, J.; Emberlin, J. Are the birch trees in Southern England a source of Betula pollen for North London? Int. J. Biometeorol. 2009, 53, 75–86. [Google Scholar] [CrossRef]
- Oteros, J.; García-Mozo, H.; Alcázar, P.; Belmonte, J.; Bermejo, D.; Boi, M.; Nanos, P.C.; Díaz de la Guardia, C.; Fernández-González, D.; González-Minero, F.; et al. A new method for determining the sources of airborne particles. J. Environ. Manag. 2015, 155, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Rojo, J.; Pérez-Badia, R. Spatiotemporal analysis of olive flowering using geostatistical techniques. Sci. Total Environ. 2015, 505, 860–869. [Google Scholar] [CrossRef]
- Romero-Morte, J.; Rojo, J.; Rivero, R.; Fernández-González, F.; Pérez-Badia, R. Standardised index for measuring atmospheric grass-pollen emission. Sci. Total Environ. 2018, 612, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Rojo, J.; Orlandi, F.; Pérez-Badia, R.; Aguilera, F.; Ben Dhiab, A.; Bouziane, H.; Díaz de la Guardia, C.; Galán, C.; Gutiérrez-Bustillo, A.M.; Moreno-Grau, S.; et al. Modeling olive pollen intensity in the Mediterranean region through analysis of emission sources. Sci. Total. Environ. 2016, 551–552, 73–82. [Google Scholar] [CrossRef]
- Oteros, J.; Valencia, R.M.; del Río, S.; Vega, A.M.; García-Mozo, H.; Galán, C.; Gutiérrez, P.; Mandrioli, P.; Fernández-González, D. Concentric Ring Method for generating pollen maps. Quercus as case study. Sci. Total Environ. 2017, 576, 637–645. [Google Scholar] [CrossRef] [PubMed]
- OECD. Glossary of Statistical Terms; Technical Report; OECD: Paris, France, 2008; ISBN 978-92-64-025561-0. [Google Scholar]
- WMO. World Meteorological Organization: Guide to Meteorological Instruments and Methods of Measurement; Technical Report; WMO-No. 8; WMO: Geneva, Switzerland, 2008. [Google Scholar]
- Skjøth, C.; Smith, M.; Šikoparija, B.; Stach, A.; Myszkowska, D.; Kasprzyk, I.; Radisic, P.; Stjepanovic, B.; Hrga, I.; Apatini, D.; et al. A method for producing airborne pollen source inventories: An example of Ambrosia (ragweed) on the Pannonian Plain. Agric. For. Meteorol. 2010, 150, 1203–1210. [Google Scholar] [CrossRef]
- Hirst, J.M. An automatic volumetric spore trap. Ann. Appl. Biol. 1952, 39, 257–265. [Google Scholar] [CrossRef]
- Galán, C.; Smith, M.; Thibaudon, M.; Frenguelli, G.; Oteros, J.; Gehrig, R.; Berger, U.; Clot, B.; Brandao, R. Pollen monitoring: Minimum requirements and reproducibility of analysis. Aerobiologia 2014, 30, 385–395. [Google Scholar] [CrossRef]
- Hamaoui-Laguel, L.; Vautard, R.; Liu, L.; Solmon, F.; Viovy, N.; Khvorostyanov, D.; Essl, F.; Chuine, I.; Colette, A.; Semenov, M.A.; et al. Effects of climate change and seed dispersal on airborne ragweed pollen loads in Europe. Nat. Clim. Chang. 2015, 5, 766–771. [Google Scholar] [CrossRef]
- Bastl, K.; Kmenta, M.; Berger, U. Defining Pollen Seasons: Background and Recommendations. Curr. Allergy Asthma Rep. 2018, 18, 73. [Google Scholar] [CrossRef] [Green Version]
- Ziska, L.H.; Makra, L.; Harry, S.K.; Bruffaerts, N.; Hendrickx, M.; Coates, F.; Saarto, A.; Thibaudon, M.; Oliver, G.; Damialis, A.; et al. Temperature-related changes in airborne allergenic pollen abundance and seasonality across the northern hemisphere: A retrospective data analysis. Lancet Planet. Health 2019, 3, e124–e131. [Google Scholar] [CrossRef] [Green Version]
- Menut, L.; Tripathi, O.; Colette, A.; Vautard, R.; Flaounas, E.; Bessagnet, B. Evaluation of regional climate simulations for air quality modelling purposes. Clim. Dyn. 2013, 40, 2515–2533. [Google Scholar] [CrossRef]
- Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al. EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578. [Google Scholar] [CrossRef]
- Vautard, R.; Gobiet, A.; Jacob, D.; Belda, M.; Colette, A.; Deque, M.; Fernandez, J.; Garcia-Diez, M.; Goergen, K.; Guttler, I.; et al. The simulation of European heat waves from an ensemble of regional climate models within the EURO-CORDEX project. Clim. Dyn. 2013, 41, 2555–2575. [Google Scholar] [CrossRef]
- Hong, S.Y.; Dudhia, J.; Chen, S. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Weather Rev. 2004, 132, 103–120. [Google Scholar] [CrossRef]
- Mlawer, E.; Taubman, S.; Brown, P.; Iacono, M.; Clough, S. Radiative transfer for inhomogeneous atmospheres: RRTM a validated correlated-k model for the longwave. J. Geophys. Res. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Dudhia, J. Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Grell, G.; Dévényi, D. A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophys. Res. Lett. 2002, 29, 38-1–38-4. [Google Scholar] [CrossRef] [Green Version]
- Haylock, M.R.; Hofstra, N.; Tank, A.M.G.K.; Klok, E.J.; Jones, P.D.; New, M. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006. J. Geophys. Res. Atmos. 2008, 113, D20119. [Google Scholar] [CrossRef] [Green Version]
- Cornes, R.C.; van der Schrier, G.; van den Besselaar, E.J.M.; Jones, P.D. An Ensemble Version of the E-OBS Temperature and Precipitation Data Sets. J. Geophys. Res. Atmos. 2018, 123, 9391–9409. [Google Scholar] [CrossRef] [Green Version]
- Maya-Manzano, J.; Sadyś, M.; Tormo-Molina, R.; Fernández-Rodríguez, S.; Oteros, J.; Silva-Palacios, I.; Gonzalo-Garijo, A. Relationships between airborne pollen grains, wind direction and land cover using GIS and circular statistics. Sci. Total. Environ. 2017, 584–585, 603–613. [Google Scholar] [CrossRef]
Station | City /Country | Longitude (°W) | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 |
---|---|---|---|---|---|---|---|---|---|
Latitude (°N) | % | % | % | % | % | % | % | ||
HUDEBR | Debrecen/Hungary | 21.58/47.53 | 90 | 92 | 84 | 92 | 92 | 100 | 98 |
HUGYOE | Györ/Hungary | 17.60/47.67 | 90 | 92 | 92 | 92 | 100 | 100 | 100 |
HRZAGR | Zagreb/Croatia | 16.00/45.80 | 83 | 76 | 100 | 81 | 70 | 96 | 88 |
VELIKA | Velika-Gorica/ Croatia | 16.38/45.78 | 0 | 0 | 0 | 100 | 100 | 83 | 100 |
SAMOBOR | Samobor/ Croatia | 15.71/45.80 | 0 | 0 | 0 | 100 | 100 | 100 | 82 |
IVANIC | Ivanić-Grad/Croatia | 16.07/45.70 | 0 | 0 | 0 | 100 | 82 | 100 | 100 |
SLAVONSKI | Slavonski Brod/Croatia | 18.02/45.15 | 0 | 0 | 0 | 100 | 100 | 100 | 100 |
BJELOVAR | Bjelovar/Croatia | 16.84/45.89 | 100 | 100 | 100 | 100 | 100 | 100 | 0 |
ROUSSILLON | Lyon/France | 4.81/45.37 | 77 | 75 | 83 | 71 | 82 | 71 | 89 |
Station | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 |
---|---|---|---|---|---|---|---|
BJELOVAR | 229 + 29 | 230 + 29 | 226 + 33 | 225 + 29 | 223 + 33 | 227 + 30 | - |
HRZAGR | 230 + 26 | 229 + 29 | 222 + 37 | 232 + 21 | 224 + 27 | 224 + 39 | 229 + 27 |
HUDEBR | 219 + 43 | 228 + 45 | 218 + 49 | 223 + 34 | 226 + 31 | 227 + 30 | 224 + 42 |
HUGYOE | 223 + 36 | 231 + 45 | 226 + 41 | 224 + 33 | 223 + 39 | 227 + 41 | 230 + 30 |
IVANIC | - | - | - | 224 + 30 | 222 + 31 | 231 + 25 | 230 + 38 |
ROUSSILLON | 227 + 33 | 230 + 25 | 224 + 35 | 229 + 26 | 224 + 34 | 230 + 31 | 222 + 35 |
SAMOBOR | - | - | - | 228 + 30 | 225 + 29 | 232 + 41 | 230 + 39 |
SLAVONSKI | - | - | - | 223 + 33 | 224 + 39 | 230 + 29 | 228 + 32 |
VELIKA | - | - | - | 224 + 30 | 222 + 32 | 230 + 26 | 230 + 27 |
Variable | Symbol | Unit |
---|---|---|
2 m temperature | K | |
2 m specific humidity | g g | |
Friction velocity | m s | |
Convective velocity scale | m s | |
Precipitation | mm h | |
Boundary layer height | m | |
Surface sensible heat flux | W m | |
Downward shortwave radiation flux | W m | |
Mean daily value | ||
Maximum daily value | ||
Mean morning value | ||
Morning temporal gradient |
Site | Mean T | R | RMSE | Bias | |
---|---|---|---|---|---|
Model | Obs | ||||
BJELOVAR | 17.295 | 17.053 | 0.969 | 1.621 | 0.121 |
HRZAGR | 18.330 | 16.848 | 0.969 | 2.236 | 0.741 |
HUDEBR | 12.098 | 10.823 | 0.966 | 2.097 | 0.637 |
HUGYOE | 17.076 | 16.345 | 0.967 | 1.823 | 0.365 |
IVANIC | 17.346 | 17.059 | 0.964 | 1.740 | 0.143 |
ROUSSILLON | 14.926 | 15.095 | 0.968 | 1.475 | −0.085 |
SAMOBOR | 16.636 | 16.175 | 0.965 | 1.746 | 0.231 |
SLAVONSKI | 17.960 | 16.893 | 0.973 | 1.884 | 0.534 |
VELIKA | 17.323 | 17.505 | 0.966 | 1.682 | −0.091 |
Station | ||||
---|---|---|---|---|
ROUSSILLON | ||||
R (p) | R (p) | R (p) | R (p) | |
0.66 (0.00) | 0.63 (0.00) | 0.65 (0.00) | 0.18 (0.18) | |
0.40 (0.00) | 0.40 (0.00) | 0.32 (0.01) | −0.11 (0.41) | |
0.11 (0.42) | 0.11 (0.39) | 0.10 (0.47) | −0.14 (0.29) | |
0.17 (0.22) | 0.37 (0.00) | 0.22 (0.09) | 0.00 (1.00) | |
−0.05 (0.72) | 0.00 (0.99) | −0.10 (0.47) | −0.08 (0.54) | |
0.33 (0.01) | 0.51 (0.00) | 0.37 (0.00) | 0.45 (0.00) | |
−0.03 (0.82) | 0.11 (0.43) | 0.05 (0.72) | 0.18 (0.19) | |
0.12 (0.36) | 0.18 (0.17) | 0.18 (0.18) | 0.17 (0.20) | |
HUDEBR | ||||
R (p) | R (p) | R (p) | R (p) | |
0.41 (0.00) | 0.42 (0.00) | 0.44 (0.00) | −0.13 (0.27) | |
0.32 (0.01) | 0.37 (0.00) | 0.33 (0.00) | 0.24 (0.04) | |
−0.26 (0.02) | −0.16 (0.18) | −0.18 (0.12) | −0.06 (0.59) | |
0.04 (0.74) | 0.15 (0.20) | 0.15 (0.19) | 0.00 (1.00) | |
0.13 (0.25) | 0.21 (0.07) | 0.24 (0.04) | 0.38 (0.00) | |
−0.03 (0.79) | 0.20 (0.09) | 0.23 (0.05) | 0.24 (0.04) | |
−0.01 (0.93) | 0.02 (0.85) | 0.05 (0.69) | −0.20 (0.09) | |
0.37 (0.00) | 0.38 (0.00) | 0.37 (0.00) | −0.07 (0.55) | |
HRZAGR | ||||
R (p) | R (p) | R (p) | R (p) | |
0.22 (0.13) | 0.35 (0.01) | 0.29 (0.05) | 0.19 (0.19) | |
−0.08 (0.58) | −0.05 (0.71) | −0.06 (0.68) | −0.22 (0.14) | |
−0.23 (0.12) | −0.18 (0.21) | −0.10 (0.50) | 0.01 (0.95) | |
0.24 (0.09) | 0.27 (0.06) | 0.31 (0.03) | 0.00 (1.00) | |
−0.07 (0.65) | −0.08 (0.60) | −0.09 (0.55) | −0.09 (0.53) | |
−0.09 (0.53) | 0.11 (0.45) | 0.11 (0.44) | 0.07 (0.64) | |
0.44 (0.00) | 0.42 (0.00) | 0.40 (0.01) | 0.20 (0.16) | |
0.28 (0.05) | 0.30 (0.04) | 0.29 (0.05) | 0.11 (0.46) | |
VELIKA | ||||
R () | R () | R () | R () | |
0.35 (0.01) | 0.32 (0.02) | 0.33 (0.02) | −0.02 (0.92) | |
0.32 (0.02) | 0.35 (0.01) | 0.23 (0.10) | −0.16 (0.28) | |
−0.06 (0.68) | −0.04 (0.78) | 0.06 (0.68) | −0.12 (0.39) | |
0.34 (0.01) | 0.38 (0.01) | 0.43 (0.00) | 0.00 (1.00) | |
−0.06 (0.70) | 0.04 (0.78) | −0.03 (0.81) | 0.40 (0.00) | |
0.15 (0.31) | 0.27 (0.06) | 0.35 (0.01) | 0.18 (0.22) | |
0.44 (0.00) | 0.43 (0.00) | 0.44 (0.00) | 0.23 (0.10) | |
0.34 (0.02) | 0.34 (0.02) | 0.36 (0.01) | 0.11 (0.45) |
Site | Obsmean | Modmean | R | RMSE | Bias |
---|---|---|---|---|---|
P2013: [20] | |||||
BJELOVAR | 75.76 | 57.19 | 0.70 | 1.76 | −18.57 |
HRZAGR | 32.37 | 17.45 | 0.73 | 1.97 | −14.92 |
HUDEBR | 130.10 | 46.01 | 0.78 | 0.93 | −84.08 |
HUGYOE | 43.28 | 26.70 | 0.57 | 1.04 | −16.58 |
IVANIC | 68.60 | 24.52 | 0.67 | 2.25 | −44.07 |
ROUSSILLON | 59.89 | 3.57 | −0.08 | 1.14 | −56.32 |
SAMOBOR | 16.24 | 9.64 | 0.66 | 1.66 | −6.60 |
SLAVONSKI | 203.47 | 56.22 | 0.77 | 0.94 | −147.24 |
VELIKA | 78.93 | 49.03 | 0.66 | 2.65 | −29.90 |
Average | R = 0.71 | 0.61 | 1.59 | −46.48 | |
E2011: [21] | |||||
BJELOVAR | 75.76 | 67.66 | 0.73 | 1.46 | −8.10 |
HRZAGR | 32.37 | 20.69 | 0.81 | 0.94 | −11.68 |
HUDEBR | 130.10 | 46.90 | 0.69 | 0.95 | −83.19 |
HUGYOE | 43.28 | 28.01 | 0.67 | 1.25 | −15.27 |
IVANIC | 68.60 | 25.10 | 0.76 | 0.80 | −43.50 |
ROUSSILLON | 59.89 | 20.45 | 0.79 | 0.76 | −39.44 |
SAMOBOR | 16.24 | 15.03 | 0.56 | 2.97 | −1.21 |
SLAVONSKI | 203.47 | 60.53 | 0.87 | 0.91 | −142.94 |
VELIKA | 78.93 | 51.69 | 0.73 | 2.71 | −27.23 |
Average | R = 0.70 | 0.73 | 1.42 | −41.40 | |
TS2021: This study | |||||
BJELOVAR | 75.76 | 71.50 | 0.85 | 1.27 | −4.25 |
HRZAGR | 32.37 | 22.79 | 0.85 | 1.05 | −9.58 |
HUDEBR | 130.10 | 51.25 | 0.77 | 0.94 | −78.85 |
HUGYOE | 43.28 | 28.30 | 0.76 | 0.90 | −14.98 |
IVANIC | 68.60 | 27.08 | 0.67 | 0.84 | −41.52 |
ROUSSILLON | 59.89 | 25.23 | 0.80 | 0.85 | −34.66 |
SAMOBOR | 16.24 | 16.21 | 0.52 | 3.33 | −0.03 |
SLAVONSKI | 203.47 | 72.49 | 0.80 | 1.00 | −130.98 |
VELIKA | 78.93 | 55.49 | 0.56 | 2.94 | −23.44 |
Average | R = 0.77 | 0.73 | 1.46 | −37.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Menut, L.; Khvorostyanov, D.; Couvidat, F.; Meleux, F. Impact of Ragweed Pollen Daily Release Intensity on Long-Range Transport in Western Europe. Atmosphere 2021, 12, 693. https://doi.org/10.3390/atmos12060693
Menut L, Khvorostyanov D, Couvidat F, Meleux F. Impact of Ragweed Pollen Daily Release Intensity on Long-Range Transport in Western Europe. Atmosphere. 2021; 12(6):693. https://doi.org/10.3390/atmos12060693
Chicago/Turabian StyleMenut, Laurent, Dmitry Khvorostyanov, Florian Couvidat, and Frédérik Meleux. 2021. "Impact of Ragweed Pollen Daily Release Intensity on Long-Range Transport in Western Europe" Atmosphere 12, no. 6: 693. https://doi.org/10.3390/atmos12060693
APA StyleMenut, L., Khvorostyanov, D., Couvidat, F., & Meleux, F. (2021). Impact of Ragweed Pollen Daily Release Intensity on Long-Range Transport in Western Europe. Atmosphere, 12(6), 693. https://doi.org/10.3390/atmos12060693