Air Quality Modeling for Sustainable Clean Environment Using ANFIS and Machine Learning Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Major Sources of Air Pollution and Their Impacts on Air Quality
2.2. Application of ANFIS for Air Quality Modeling
2.3. ANFIS Based Reasoning for Air Quality Prediction
- Rule 1: IF (SO2) is low and (CO) is low and (H2S) is low and (O3) is low and (NO) is low and (PM10) is low THEN The air quality is good.
- Rule 2: IF (SO2) is low and (CO) is normal and (H2S) is normal and (O3) is low and (NO) is normal and (PM10) is normal THEN The air quality is good.
- Rule 3: IF (SO2) is high and (CO) is normal and (H2S) is normal and (O3) is low and (NO) is normal and (PM10) is very high THEN The air quality is normal.
- Rule 4: IF (SO2) is low and (CO) is high and (H2S) is high and (O3) is very low and (NO) is high and (PM10) is very low THEN The air quality is unhealthy.
- Rule 5: IF (SO2) is normal and (CO) is high and (H2S) is high and (O3) is very high and (NO) is high and (PM10) is high THEN The air quality is unhealthy.
- Rule 6: IF (SO2) is very low and (CO) is very high and (H2S) is very high and (O3) is high and (NO) is very high and (PM10) is low THEN air quality is hazardous.
3. Machine Learning Approach for Air Quality Estimation
3.1. Levenberg–Marquardt (LM) Algorithm
3.2. Nonlinear Autoregressive with External (Exogenous) Input (NARX)
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, J.; Wu, P.; Chen, H.; Zhou, L.; Tao, Z.; Zhu, J.; Wu, P.; Chen, H.; Zhou, L.; Tao, Z. A Hybrid Forecasting Approach to Air Quality Time Series Based on Endpoint Condition and Combined Forecasting Model. Int. J. Environ. Res. Public Health 2018, 15, 1941. [Google Scholar] [CrossRef] [Green Version]
- Asadi, S.; Shahrabi, J.; Abbaszadeh, P.; Tabanmehr, S. A new hybrid artificial neural networks for rainfall-runoff process modeling. Neurocomputing 2013, 121, 470–480. [Google Scholar] [CrossRef]
- Sozzi, R.; Bolignano, A.; Ceradini, S.; Morelli, M.; Petenko, I.; Argentini, S. Quality control and gap-filling of PM10 daily mean concentrations with the best linear unbiased estimator. Environ. Monit. Assess. 2017, 189, 562. [Google Scholar] [CrossRef] [PubMed]
- Reikard, G. Volcanic emissions and air pollution: Forecasts from time series models. Atmos. Environ. 2019, 1, 100001. [Google Scholar] [CrossRef]
- Suhermi, N.; Suhartono, D.; Prastyo, D.; Ali, B. Roll motion prediction using a hybrid deep learning and ARIMA model. Procedia Comput. Sci. 2018, 144, 251–258. [Google Scholar] [CrossRef]
- Silibello, C.; D’Allura, A.; Finardi, S.; Bolignano, A.; Sozzi, R. Application of bias adjustment techniques to improve air quality forecasts. Atmos. Pollut. Res. 2015, 6, 928–938. [Google Scholar] [CrossRef]
- Donnelly, A.; Misstear, B.; Broderick, B. Real-time air quality forecasting using integrated parametric and non-parametric regression techniques. Atmos. Environ. 2015, 103, 53–65. [Google Scholar] [CrossRef]
- Rybarczyk, Y.; Zalakeviciute, R.; Rybarczyk, Y.; Zalakeviciute, R. Machine Learning Approaches for Outdoor Air Quality Modelling: A Systematic Review. Appl. Sci. 2018, 8, 2570. [Google Scholar] [CrossRef] [Green Version]
- Caraka, R.E.; Chen, R.C.; Yasin, H.; Lee, Y.; Pardamean, B. Hybrid Vector Autoregression Feedforward Neural Network with Genetic Algorithm Model for Forecasting Space-Time Pollution Data. Indones. J. Sci. Technol. 2021, 6, 243–266. [Google Scholar]
- Aggarwal, A.; Toshniwal, D. Detection of anomalous nitrogen dioxide (NO2) concentration in urban air of India using proximity and clustering methods. J. Air Waste Manag. 2019, 69, 805–822. [Google Scholar] [CrossRef]
- Bai, X.X.; Dong, J.; Rui, X.G.; Wang, H.F.; Yin, W.J. International Business Machines Corp. Very Short-Term Air Pollution Forecasting. U.S. Patent Application 14/939,522, 8 October 2019. [Google Scholar]
- Christin, S.; Hervet, É.; Lecomte, N. Applications for deep learning in ecology. Methods Ecol. Evol. 2019, 10, 1632–1644. [Google Scholar] [CrossRef]
- Fairbrass, A.J.; Firman, M.; Williams, C.; Brostow, G.J.; Titheridge, H.; Jones, K.E. CityNet—Deep learning tools for urban ecoacoustic assessment. Methods Ecol. Evol. 2019, 10, 186–197. [Google Scholar] [CrossRef] [Green Version]
- Torney, C.J.; Lloyd-Jones, D.J.; Chevallier, M.; Moyer, D.C.; Maliti, H.T.; Mwita, M.; Kohi, E.M.; Hopcraft, G.C. A comparison of deep learning and citizen science techniques for counting wildlife in aerial survey images. Methods Ecol. Evol. 2019, 10, 779–787. [Google Scholar] [CrossRef] [Green Version]
- Sayeed, A.; Choi, Y.; Eslami, E.; Lops, Y.; Roy, A.; Jung, J. Using a deep convolutional neural network to predict 2017 ozone concentrations, 24 hours in advance. Neural Netw. 2019, 121, 396–408. [Google Scholar] [CrossRef]
- Munawar, S.; Hamid, D.; Khan, M.S.; Ahmed, A.; Hameed, N. Health Monitoring Considering Air Quality Index Prediction Using Neuro-Fuzzy Inference Model: A Case Study of Lahore, Pakistan. J. Basic Appl. 2017, 12, 123–132. [Google Scholar] [CrossRef]
- Rahman, M.M.; Shafiullah, M.; Rahman, S.M.; Khondaker, A.N.; Amao, A.; Zahir, M. Soft Computing Applications in Air Quality Modeling: Past, Present, and Future. Sustainability 2020, 12, 4045. [Google Scholar] [CrossRef]
- Hvidtfeldt, U.A.; Sorensen, M.; Geels, C.; Ketzel, M.; Khan, J.; Tjonneland, A.; Overvad, K.; Brandt, J.; Raaschou-Nielsen, O. Long-term residential exposure to PM2.5, PM10, black carbon, NO2, and ozone and mortality in a Danish cohort. Environ. Int. 2019, 123, 265–272. [Google Scholar] [CrossRef]
- Ansari, M.; Ehrampoush, M.H. Meteorological correlates and AirQ+ health risk assessment of ambient fine particulate matter in Tehran, Iran. Environ. Res. 2019, 170, 141–150. [Google Scholar] [CrossRef]
- Liu, F.; Chen, G.; Huo, W.; Wang, C.; Liu, S.; Li, N.; Mao, S.; Hou, Y.; Lu, Y.; Xiang, H. Associations between long-term exposure to ambient air pollution and risk of type 2 diabetes mellitus: A systematic review and meta-analysis. Environ. Pollut. 2019, 252, 1235–1245. [Google Scholar] [CrossRef]
- Alimissis, A.; Philippopoulos, K.; Tzanis, C.G.; Deligiorgi, D. Spatial estimation of urban air pollution with the use of artificial neural network models. Atmos. Environ. 2018, 191, 205–213. [Google Scholar] [CrossRef]
- Cabaneros, S.M.; Calautit, J.K.; Hughes, B.R. A review of artificial neural network models for ambient air pollution prediction. Environ. Model. Softw. 2019, 119, 285–304. [Google Scholar] [CrossRef]
- Taylan, O. Modelling and analysis of ozone concentration by artificial intelligent techniques for estimating air quality. Atmos. Environ. 2017, 150, 356–365. [Google Scholar] [CrossRef]
- Pawlak, I.; Jarosławski, J.; Pawlak, I.; Jarosławski, J. Forecasting of Surface Ozone Concentration by Using Artificial Neural Networks in Rural and Urban Areas in Central Poland. Atmosphere 2019, 10, 52. [Google Scholar] [CrossRef] [Green Version]
- Biancofiore, F.; Busilacchio, M.; Verdecchia, M.; Tomassetti, B.; Aruffo, E.; Bianco, S.; Di Tommaso, S.; Colangeli, C.; Rosatelli, G.; Di Carlo, P. Recursive neural network model for analysis and forecast of PM10 and PM2.5. Atmos. Pollut. Res. 2017, 8, 652–659. [Google Scholar] [CrossRef]
- Telesca, V.; Caniani, D.; Calace, S.; Marotta, L.; Mancini, I.M. Daily temperature and precipitation prediction using neuro-fuzzy networks and weather generators. In Proceedings of the International Conference on Computational Science and Its Applications, Trieste, Italy, 3–6 July 2017. [Google Scholar]
- Caraka, R.E.; Chen, R.C.; Yasin, H.; Pardamean, B.; Toharudin, T.; Wu, S.H. Prediction of Status Particulate Matter 2.5 using State Markov Chain Stochastic Process and Hybrid VAR-NN-PSO. IEEE Access 2019, 7, 161654–161665. [Google Scholar] [CrossRef]
- Grivas, G.; Chaloulakou, A. Artificial neural network models for prediction of PM10 hourly concentrations, in the Greater Area of Athens, Greece. Atmos. Environ. 2006, 40, 1216–1229. [Google Scholar] [CrossRef]
- Jorquera, H.; Perez, R.; Cipriano, A.; Espejo, A.; Victoria Letelier, M.; Acuna, G. Forecasting ozone daily maximum levels at Santiago, Chile. Atmos. Environ. 1998, 32, 3415–3424. [Google Scholar] [CrossRef]
- Ghoneim, O.A.; Manjunatha, B.R. Forecasting of ozone concentration in the smart city using deep learning. In Proceedings of the 2017 International Conference on Advances in Computing, Communications, and Informatics, ICACCI 2017, Udupi, India, 13–16 September 2017; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NJ, USA, 2017; pp. 1320–1326. [Google Scholar]
- Zhou, Y.; Chang, F.J.; Chang, L.C.; Kao, I.F.; Wang, Y.S. Explore a deep learning multi-output neural network for regional multi-step-ahead air quality forecasts. J. Clean. Prod. 2019, 209, 134–145. [Google Scholar] [CrossRef]
- Ayturan, Y.A.; Ayturan, Z.C.; Altun, H.O. Air pollution modeling with deep learning: A review. Int. J. Environ. Pollut. Environ. Model. 2018, 1, 58–62. [Google Scholar]
- Zhou, K.; Xie, R. Review of neural network models for air quality prediction. In International Conference on Big Data Analytics for Cyber-Physical-Systems; Springer: Berlin/Heidelberg, Germany, 2020; Volume 1117, pp. 83–90. [Google Scholar]
- Iskandaryan, D.; Ramos, F.; Trilles, S. Air Quality Prediction in Smart Cities Using Machine Learning Technologies based on Sensor Data: A Review. Appl. Sci. 2020, 10, 2401. [Google Scholar] [CrossRef] [Green Version]
- Sowlat, M.H.; Gharibi, H.; Yunesian, M.; Mahmoudi, M.T.; Lotfi, S. A novel, Fuzzy-based air quality index (FAQI) for air quality assessment. Atmos. Environ. 2011, 45, 2050–2059. [Google Scholar] [CrossRef]
- EPA. Guideline on Air Quality Models (Revised); 40 CFR 51; US EPA: Washington, DC, USA, 2005. [Google Scholar]
- US EPA. Guideline for Developing an Ozone Forecasting Program; EPA-454/R-99-009; US EPA: Washington, DC, USA, 1999. [Google Scholar]
- Kaur, G.; Gao, J.; Chiao, S.; Lu, S. Air Quality Prediction: Big data and Machine Learning Approaches. In Proceedings of the 5th International Conference on Sustainable Environment and Agriculture (ICSEA 2017), Los Angeles, CA, USA, 28–30 October 2017. [Google Scholar]
- Masmoudi, S.; Elghazel, H.; Taieb, D.; Yazar, O.; Kallel, A. A machine-learning framework for predicting multiple air pollutants’ concentrations via multi-target regression and feature selection. Sci. Total Environ. 2020, 715, 136991. [Google Scholar] [CrossRef] [PubMed]
- Maciąg, P.S.; Kasabov, N.; Kryszkiewicz, M.; Bembenik, R. Air pollution prediction with clustering-based ensemble of evolving spiking neural networks and a case study for London area. Environ. Model Softw. 2019, 118, 262–280. [Google Scholar] [CrossRef]
- Pan, S.; Choi, Y.; Roy, A.; Jeon, W. Allocating emissions to 4 km and 1 km horizontal spatial resolutions and its impact on simulated NOx and O3 in Houston, TX. Atmos. Environ. 2017, 164, 398–415. [Google Scholar] [CrossRef]
- Wang, D.; Wei, S.; Luo, H.; Yue, C.; Grunder, O. A novel hybrid model for air quality index forecasting based on two-phase decomposition technique and modified extreme learning machine. Sci. Total Environ. 2017, 580, 719–733. [Google Scholar] [CrossRef]
- Prasad, K.; Gorai, A.K.; Goyal, P. Development of ANFIS models for air quality forecasting and input optimization for reducing the computational cost and time. Atmos. Environ. 2016, 128, 246–262. [Google Scholar] [CrossRef]
- Ishibuchi, H.; Nakashima, T.; Murata, T. Performance evaluation of fuzzy classifier systems for multidimensional pattern classification problems. IEEE Trans. Syst. Man Cybern. Part B Cybern. 1999, 29, 601–618. [Google Scholar] [CrossRef]
- El Raey, M. Air Quality and Atmospheric Pollution in the Arab Region, Economic and Social League of Arab States, Commission for Western Asia Joint Technical Secretariat of the Council of Arab Ministers Responsible for the Environment; University of Alexandria: Alexandria, Egypt, 2006. [Google Scholar]
- Taylan, O.; Karagozoglu, B. An Adaptive Neuro-fuzzy model for prediction of student’s academic performance. J. Comput. Ind. Eng. 2009, 57, 732–741. [Google Scholar] [CrossRef]
- Al-Alawi, S.M.; Abdul-Wahab, S.A.; Bakheit, C.S. Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone. Environ. Model Softw. 2008, 23, 396–403. [Google Scholar] [CrossRef]
- Jang, J.S.R.; Sun, C.T.; Mizutani, E. Neuro-Fuzzy and Soft Computing; Prentice-Hall: Hoboken, NJ, USA, 1997. [Google Scholar]
- Wilamowski, B.M.; Yu, H. Improved Computation for Levenberg Marquardt Training. IEEE Trans. Neural Netw. 2010, 21, 930–937. [Google Scholar] [CrossRef]
- Wahab, S.A. The role of meteorology on predicting SO2 concentrations around a refinery: A case study from Oman. Ecol. Model. 2006, 197, 13–20. [Google Scholar] [CrossRef]
- Wahab, A.S.; Bakheit, S.C.; Al-Alawi, S. Principal component and multiple regression analysis in modeling of ground-level ozone and factors affecting its concentrations. Environ. Model Softw. 2005, 20, 1263–1271. [Google Scholar] [CrossRef]
- Taylan, O. Estimating the quality of process yield by fuzzy sets and systems. Expert Syst. Appl. 2011, 38, 12599–12607. [Google Scholar] [CrossRef]
- Adebiyi, A.A.; Adewumi, A.O.; Ayo, C.K. Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction. J. Appl. Math. 2014, 2014, 614342. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Patuwo, B.; Hu, M.Y. Forecasting with artificial neural networks: The state of the art. Int. J. Forecast. 1998, 14, 35–62. [Google Scholar] [CrossRef]
- Khashei, M.; Bijari, M.; Ardali, G.A.R. Improvement of auto-regressive integrated moving average models using fuzzy logic and artificial neural networks (ANNs). Neurocomputing 2009, 72, 956–967. [Google Scholar] [CrossRef]
AQI Categories | Quality Levels of Health Concern |
---|---|
0–50 | Good |
51–100 | Moderate |
101–150 | Unhealthy for sensitive groups |
151–200 | Unhealthy |
201–300 | Very unhealthy |
>301 | Hazardous |
Air Pollutant | Air Quality Standards | ||
---|---|---|---|
KSA | Gulf Countries | US-EPA Standards | |
Sulfur dioxide (SO2) | 730 μg/m3 (1 h) 365 μg/m3 (24 h) 85 μg/m3 (1 year) | 441 μg/m3 (1 h) 217 μg/m3 (24 h) 65 μg/m3 (1 year) | 80 μg/m3 (annual arithmetic mean) 365 μg/m3 (24 h average) |
Nitrogen oxides NO2 | 660 μg/m3 (1 h) 100 μg/m3 (1 year) | 660 μg/m3 (1 h) 100 μg/m3 (1 year) | 100 μg/m3 (annual arithmetic mean) |
Ozone (O3) | 295 μg/m3 (1 h) | 235 μg/m3 (1 h) 157 μg/m3 (8 h) | 235 μg/m3 (1 h average) 157 μg/m3 (8 h average) |
Carbon monoxide (CO) | 40,000 μg/m3 (1 h) 10,000 μg/m3 (8 h) | 40,000 μg/m3 (1 h) 10,000 μg/m3 (8 h) | 10 μg/m3 (8 h average) 40 μg/m3 (1 h average) |
Hydrogen sulfide (H2S) | 200 μg/m3 (1 h) 40 μg/m3 (24 h) | 200 μg/m3 (1 h) 40 μg/m3 (24 h) | 200 μg/m3 (1 h) 40 μg/m3 (24 h) |
Particulate matters (PM10) | 340 μg/m3 (24 h) 80 μg/m3 (1 year) | 340 μg/m3 (24 h) 80 μg/m3 (1 year) | 50 μg/m3 (annual arithmetic mean) 150 μg/m3 (24 h average) |
Epoch | Number of Fuzzy Rules of ANFIS Model | Statistics ‘d’ RMSE | Mean Square Error after Model Stabilization (%) | |
---|---|---|---|---|
3000 | 3 | 0. 527 | 12.634 | 0.531 |
5 | 0.351 | 6.768 | 0.469 | |
6 | 0.285 | 1.528 | 0.244 | |
11 | 0.491 | 7.936 | 0.328 | |
15 | 0.648 | 8.604 | 0.375 | |
17 | 0.692 | 10.486 | 0.479 | |
20 | 0.592 | 11.943 | 0.527 | |
21 | 0.727 | 15.631 | 0.684 | |
25 | 0.731 | 17.859 | 0.725 |
Sulfur Dioxide (SO2, μg/m3) | Carbon Monoxide (CO, μg/m3) | Hydrogen Sulfur, (H2S μg/m3) | Ozone (O3, μg/m3) | Nitrogen Oxide (NO, μg/m3) | Particular Matters (PM10, μg/m3) | AQI, Observed | AQI, ANNs Outcomes | AQI, ANFIS Outcomes | AQI- NARX Outcomes |
---|---|---|---|---|---|---|---|---|---|
12 | 4.4 | 339 | 75 | 4 | 60 | 198.70 | 197.7773 | 198.21 | 198.52 |
7 | 0.12 | 249 | 55 | 9 | 51 | 176.52 | 175.2971 | 176.733 | 176.61 |
4 | 0.12 | 164 | 57 | 9 | 49 | 155.87 | 154.7877 | 154.24 | 155.53 |
10 | 0.19 | 184 | 43 | 19 | 46 | 157.74 | 156.3981 | 157.49 | 157.64 |
11 | 0.29 | 338 | 49 | 20 | 53 | 159.03 | 158.9712 | 158.42 | 159.05 |
24 | 3.47 | 810 | 31 | 13 | 52 | 182.12 | 189.4121 | 184.78 | 182.54 |
31 | 0.64 | 887 | 29 | 24 | 47 | 145.91 | 144.7926 | 144.19 | 145.73 |
58 | 0.71 | 1020 | 35 | 16 | 67 | 98.58 | 99.06586 | 98.49 | 98.54 |
39 | 2.44 | 1198 | 37 | 15 | 49 | 73.96 | 73.71264 | 73.69 | 73.87 |
16 | 5.91 | 586 | 49 | 13 | 39 | 71.06 | 70.60034 | 70.90 | 71.12 |
9 | 4.37 | 88 | 43 | 23 | 40 | 71.24 | 70.76935 | 71.50 | 71.45 |
15 | 4.78 | 125 | 44 | 25 | 45 | 61.39 | 60.17372 | 60.25 | 61.14 |
19 | 5.25 | 216 | 38 | 27 | 59 | 97.16 | 97.38304 | 97.76 | 97.63 |
26 | 1.48 | 253 | 29 | 30 | 80 | 78.76 | 78.64256 | 78.28 | 78.67 |
19 | 3.99 | 314 | 52 | 17 | 37 | 77.64 | 77.6342 | 77.37 | 77.94 |
8 | 2.45 | 10 | 52 | 18 | 240 | 82.43 | 82.58674 | 83.03 | 82.51 |
10 | 7.71 | 19 | 43 | 19 | 109 | 91.02 | 91.56989 | 91.156 | 91.10 |
30 | 5.73 | 97 | 31 | 20 | 45 | 106.61 | 106.7636 | 106.63 | 106.65 |
24 | 3.47 | 810 | 31 | 13 | 52 | 108.50 | 108.7315 | 108.89 | 108.46 |
93 | 5.06 | 55 | 37 | 23 | 46 | 110.13 | 110.4067 | 110.33 | 110.31 |
67 | 2.07 | 88 | 39 | 17 | 54 | 127.85 | 127.4214 | 127.36 | 127.94 |
31 | 0.64 | 88 | 29 | 24 | 47 | 138. 68 | 137.7212 | 160.27 | 139.76 |
96 | 0.66 | 100 | 44 | 27 | 84 | 150.95 | 149.6483 | 149.34 | 151.27 |
29 | 4.31 | 106 | 34 | 13 | 69 | 156.02 | 154.6345 | 155.13 | 153.96 |
Environmental Factors | AQI | Carbon Monoxide | Hydrogen Sulfite | Ozone | Nitrogen Oxide | Particular Matters |
---|---|---|---|---|---|---|
Sulfur dioxide | 0.542 | |||||
p-value | 0.000 | |||||
Carbon monoxide | 0.142 | 0.145 | ||||
p-value | 0.000 | 0.000 | ||||
Hydrogen Sulfur | 0.999 | 0.544 | 0.143 | |||
p-value | 0.000 | 0.000 | 0.000 | |||
Ozone | −0.196 | −0.288 | −0.229 | −0.21 | ||
p-value | 0.000 | 0.000 | 0.000 | 0.000 | ||
Nitrogen oxide | 0.137 | 0.205 | 0.131 | 0.140 | −0.496 | |
p-value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | |
Particular matters | 0.008 | 0.021 | 0.017 | −0.034 | −0.097 | 0.118 |
p-value | 0.82 | 0.554 | 0.638 | 0.352 | 0.007 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taylan, O.; Alkabaa, A.S.; Alamoudi, M.; Basahel, A.; Balubaid, M.; Andejany, M.; Alidrisi, H. Air Quality Modeling for Sustainable Clean Environment Using ANFIS and Machine Learning Approaches. Atmosphere 2021, 12, 713. https://doi.org/10.3390/atmos12060713
Taylan O, Alkabaa AS, Alamoudi M, Basahel A, Balubaid M, Andejany M, Alidrisi H. Air Quality Modeling for Sustainable Clean Environment Using ANFIS and Machine Learning Approaches. Atmosphere. 2021; 12(6):713. https://doi.org/10.3390/atmos12060713
Chicago/Turabian StyleTaylan, Osman, Abdulaziz S. Alkabaa, Mohammed Alamoudi, Abdulrahman Basahel, Mohammed Balubaid, Murad Andejany, and Hisham Alidrisi. 2021. "Air Quality Modeling for Sustainable Clean Environment Using ANFIS and Machine Learning Approaches" Atmosphere 12, no. 6: 713. https://doi.org/10.3390/atmos12060713
APA StyleTaylan, O., Alkabaa, A. S., Alamoudi, M., Basahel, A., Balubaid, M., Andejany, M., & Alidrisi, H. (2021). Air Quality Modeling for Sustainable Clean Environment Using ANFIS and Machine Learning Approaches. Atmosphere, 12(6), 713. https://doi.org/10.3390/atmos12060713