Theoretical Chemistry and the Calculation of the Atmospheric State
Abstract
:1. Introduction
2. Fluid Dynamics: Scale Invariance
3. Theoretical Chemistry: Interpretation of Laboratory Experiments
3.1. Atmospheric Aerosols and Clusters
3.2. Photodissociation Processes
4. Line Shapes and Radiative Transfer
5. Turbulence, Symmetry Breaking, Emergence and Frustration
6. A Proposed Programme of Theoretical Chemistry Research
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alder, B.J.; Wainwright, T.E. Phase transition for a hard sphere system. J. Chem. Phys. 1957, 27, 1208–1209. [Google Scholar] [CrossRef] [Green Version]
- Alder, B.J.; Wainwright, T.E. Decay of the velocity autocorrelation function. Phys. Rev. 1970, 1, 18–21. [Google Scholar] [CrossRef]
- Tuck, A.F. Atmospheric Turbulence: A Molecular Dynamics Perspective; Oxford University Press: Oxford, UK, 2008; ISBN 978-0-19-923653-4. [Google Scholar]
- Tuck, A.F. From molecules to meteorology via turbulent scale invariance. Q. J. R. Meteorol. Soc. 2010, 136, 1125–1144. [Google Scholar] [CrossRef]
- Tuck, A.F. Proposed empirical entropy and Gibbs energy based on observations of scale invariance in open nonequilibrium systems. J. Phys. Chem. A 2017, 121, 6620–6629. [Google Scholar] [CrossRef] [Green Version]
- Schertzer, D.; Lovejoy, S. Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes. J. Geophys. Res. D 1987, 92, 9693–9714. [Google Scholar] [CrossRef]
- Lovejoy, S.; Schertzer, D. The Weather and Climate: Emergent Laws and Multifractal Cascades; Cambridge University Press: Cambridge, UK, 2013; ISBN 978-1-107-01898-3. [Google Scholar]
- Kadau, K.; Barber, J.L.; Germann, T.C.; Holian, B.L.; Alder, B.J. Atomistic methods in fluid simulation. Philos. Trans. R. Soc. A 2012, 368, 1547–1560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laughlin, R.B.; Pines, D.; Schmalian, J.; Stojkovic, B.P.; Wolynes, P. The middle way. Proc. Natl. Acad. Sci. USA 2000, 97, 32–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Neill, A.; Pope, V.D. The coupling between radiation and dynamics in the stratosphere. Adv. Space Res. 1993, 13, 351–358. [Google Scholar] [CrossRef]
- O’Neill, A.; Oatley, C.L.; Charlton-Perez, A.J.; Mitchell, D.M.; Jung, T. Vortex splitting on a planetary scale in the stratosphere by cyclogenesis on a sub-planetary scale in the troposphere. Q. J. R. Meteorol. Soc. 2017, 143, 691–705. [Google Scholar] [CrossRef]
- Tuck, A.F. Entropy and Exergy in Renewable Energy; Chapter NN, Scale Invariant Turbulence and Gibbs Free Energy in the Atmosphere; Wang, L.-S., Ed.; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Middlebrook, A.M.; Murphy, D.M.; Thomson, D.S. Observation of organic material in individual marine particles at Cape Grim during the First Aerosol Characterization Experiment (ACE-1). J. Geophys. Res. D 1998, 103, 16475–16483. [Google Scholar] [CrossRef]
- Murphy, D.M.; Thomson, D.S.; Mahoney, M.J. In situ measurements of organics, meteoritic material, mercury and other elements in aerosols from 5 to 19 kilometers. Science 1998, 282, 1664–1669. [Google Scholar] [CrossRef]
- Gard, E.E.; Kleeman, M.J.; Gross, D.S.; Hughes, L.S.; Allen, J.O.; Morrical, B.D.; Fergenson, D.P.; Dienes, T.; Gälli, M.E.; Johnson, R.J.; et al. Direct observation of heterogeneous chemistry in the atmosphere. Science 1998, 279, 1184–1187. [Google Scholar] [CrossRef] [PubMed]
- Ellison, G.B.; Tuck, A.F.; Vaida, V. Atmospheric processing of organic aerosols. J. Geophys. Res. D 1999, 104, 1163–11641. [Google Scholar] [CrossRef]
- Vaida, V.; Kjaergaard, H.G.; Hintze, P.E.; Donaldson, D.J. Photolysis of sulfuric acid vapor by visible solar radiation. Science 2003, 299, 1566–1568. [Google Scholar] [CrossRef] [PubMed]
- Miller, Y.; Gerber, R.B. Dynamics of vibrational overtone excitations of H2SO4, H2SO4.H2O: Hydrogen-hopping and photodissociation processes. J. Am. Chem. Soc. 2006, 128, 9594–9595. [Google Scholar] [CrossRef]
- Donaldson, D.J.; Vaida, V. The influence of organic films at the air-aqueous boundary on atmospheric processes. Chem. Revs. 2006, 106, 1445–1461. [Google Scholar] [CrossRef]
- Miller, Y.; Gerber, R.B.; Vaida, V. Photodissociation yields for vibrationally excited states of sulfuric acid under atmospheric conditions. Geophys. Res. Lett. 2007, 34, L16820. [Google Scholar] [CrossRef]
- Takahashi, K.; Plath, K.L.; Skodje, R.T.; Vaida, V. Dynamics of vibrational overtone excited pyruvic acid in the gas phase: Line broadening through hydrogen-atom chattering. J. Phys. Chem. A 2008, 112, 7321–7331. [Google Scholar] [CrossRef] [PubMed]
- Maroń, M.K.; Takahashi, K.; Shoemaker, R.K.; Vaida, V. Hydration of pyruvic acid to its geminal-diol, 2, 2-dihydroxypropanoic acid, in a water-restricted environment. Chem. Phys. Lett. 2011, 513, 184–190. [Google Scholar] [CrossRef]
- Kramer, Z.C.; Takahashi, K.; Vaida, V.; Skodje, R.T. Will water act as a photocatalyst for cluster phase chemical reactions? Vibrational overtone-induced dehydration reaction of methanediol. J. Chem. Phys. 2012, 136, 164302. [Google Scholar] [CrossRef]
- Griffith, E.C.; Carpenter, B.K.; Shoemaker, R.K.; Vaida, V. Photochemistry of aqueous pyruvic acid. Proc. Natl. Acad. Sci. USA 2013, 110, 11714–11719. [Google Scholar] [CrossRef] [Green Version]
- Griffith, E.C.; Rapf, R.J.; Shoemaker, R.K.; Carpenter, B.K.; Vaida, V. Photoinitiated Synthesis of Self-Assembled Vesicles. J. Am. Chem. Soc. 2014, 136, 3784–3787. [Google Scholar] [CrossRef] [PubMed]
- Griffith, E.C.; Perkins, R.J.; Telesford, D.M.; Adams, E.M.; Cwiklik, L.; Allen, H.C.; Roeselova, M.; Vaida, V. Interaction of L-Phenylalanine with a Phospholipid Monolayer at the Water-Air Interface. J. Phys. Chem. B 2015, 119, 9038–9048. [Google Scholar] [CrossRef] [PubMed]
- Perkins, R.J.; Shoemaker, R.K.; Carpenter, B.K.; Vaida, V. Chemical Equilibria and Kinetics in Aqueous Solutions of Zymonic Acid. J. Phys. Chem. A 2016, 120, 10096–10107. [Google Scholar] [CrossRef]
- Reed Harris, A.E.; Doussin, J.F.; Carpenter, B.K.; Vaida, V. Gas-Phase Photolysis of Pyruvic Acid: The Effect of Pressure on Reaction Rates and Products. J. Phys. Chem. A 2016, 120, 10123–10133. [Google Scholar] [CrossRef] [Green Version]
- Perkins, R.J.; Kukharchuk, A.; Delcroix, P.; Shoemaker, R.K.; Roeselova, M.; Cwiklik, L.; Vaida, V. The Partitioning of Small Aromatic Molecules to Air-Water and Phospholipid Interfaces Mediated by Non-Hydrophobic Interactions. J. Phys. Chem. B 2016, 120, 7408–7422. [Google Scholar] [CrossRef] [PubMed]
- Rapf, R.J.; Perkins, R.J.; Carpenter, B.K.; Vaida, V. Mechanistic Description of Photochemical Oligomer Formation from Aqueous Pyruvic Acid. J. Phys. Chem. A 2017, 121, 4272–4282. [Google Scholar] [CrossRef] [PubMed]
- Rapf, R.J.; Perkins, R.J.; Yang, H.S.; Miyake, G.; Carpenter, B.K.; Vaida, V. Photochemical Synthesis of Oligomeric Amphiphiles from Alkyl Oxoacids in Aqueous Environments. J. Am. Chem. Soc. 2017, 139, 6946–6959. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, B.P.; Moore, F.G.; Scatena, L.F.; Richmond, G.L. On the rise: Experimental and computational vibrational sum frequency spectroscopy studies of pyruvic acid and its surface-active oligomer species at the air-water interface. J. Phys. Chem. A 2019, 123, 10609–10619. [Google Scholar] [CrossRef]
- Church, J.R.; Vaida, V.; Skodje, R.T. Gas-Phase Reaction Kinetics of Pyruvic Acid with OH Radicals: The Role of Tunneling, Complex Formation, and Conformational Structure. J. Phys. Chem. A 2020, 124, 790–800. [Google Scholar] [CrossRef]
- Church, J.R.; Vaida, V.; Skodje, R.T. Kinetic study of gas-phase reactions of pyruvic acid with HO2. J. Phys. Chem A 2021, 125, 2232–2242. [Google Scholar] [CrossRef]
- Kappes, K.J.; Deal, A.M.; Jesperson, M.F.; Blair, S.L.; Doussin, J.-F.; Cazaunau, M.; Pangui, E.; Hopper, B.N.; Johnson, M.S.; Vaida, V. Chemistry and photochemistry of pyruvic acid at the air-water interface. J. Phys. Chem. A 2021, 125, 1036–1049. [Google Scholar] [CrossRef] [PubMed]
- Gertner, B.J.; Hynes, J.T. Model molecular dynamics simulation of hydrochloric acid ionization at the surface of stratospheric ice. Faraday Discuss. 1998, 110, 301–322. [Google Scholar] [CrossRef]
- Reyes, J.Y.; Nagy, T.; Meuwly, M. Competitive reaction pathways in vibrationally induced photodissociation of H2SO4. Phys. Chem. Chem. Phys. 2014, 34, 18533–18544. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Lopez, M.F.; Francisco, J.S.; Martins-Costa, M.T.C.; Anglada, J.M. Molecular reactions at aqueous interfaces. Nat. Rev. Chem. 2020, 4, 459–475. [Google Scholar] [CrossRef]
- Tuck, A.F.; Donaldson, D.J.; Hitchman, M.H.; Richard, E.C.; Tervahattu, H.; Vaida, V.; Wilson, J.C. On geoengineering with sulphate aerosols in the tropical upper troposphere and lower stratosphere. Clim. Chang. 2008, 90, 315–331. [Google Scholar] [CrossRef]
- Tuck, A.F. Gibbs free energy and reaction rate acceleration in and on microdroplets. Entropy 2019, 21, 1044. [Google Scholar] [CrossRef] [Green Version]
- Cooks, R.G.; Ouyang, Z.; Takats, Z.; Wiseman, J.M. Ambient mass spectrometry. Science 2006, 311, 1560–1570. [Google Scholar] [CrossRef]
- Lee, J.K.; Banerjee, S.; Nam, H.G.; Zare, R.N. Acceleration of reaction in charged microdroplets. Q. Rev. Biophys. 2015, 48, 437–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsh, B.M.; Iyer, K.; Cooks, R.G. Reaction Acceleration in Electrospray Droplets: Size, Distance, and Surfactant Effects. J. Am. Soc. Mass Spectrom. 2019, 30, 2022–2030. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Lee, J.K.; Zare, R.N.; Min, W. Strong Electric Field Observed at the Interface of Aqueous Microdroplets. J. Phys. Chem. Lett. 2020, 11, 7423–7428. [Google Scholar] [CrossRef]
- Vaida, V. Prebiotic phosphorylation enabled by microdroplets. Proc. Natl. Acad. Sci. USA 2017, 114, 12359–12361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, K.R.; Prophet, A.M.; Rovelli, G.; Willis, M.D.; Rapf, R.J.; Jacobs, M.I. A kinetic description of how interfaces accelerate reactions in micro-compartments. Chem. Sci. 2020, 11, 8533–8545. [Google Scholar] [CrossRef]
- Dobson, C.M.; Ellison, G.B.; Tuck, A.F.; Vaida, V. Atmospheric aerosols as prebiotic chemical reactors. Proc. Natl. Acad. Sci. USA 2000, 97, 11864–11868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Donaldson, D.J.; Tuck, A.F.; Vaida, V. The asymmetry of organic aerosol fission and prebiotic chemistry. Orig. Life Evol. B 2002, 32, 237–245. [Google Scholar] [CrossRef]
- Griffith, E.C.; Tuck, A.F.; Vaida, V. Ocean-Atmosphere Interactions in the Emergence of Complexity in Simple Chemical Systems. Accounts Chem. Res. 2012, 45, 2106–2113. [Google Scholar] [CrossRef]
- Tuck, A. The role of atmospheric aerosols in the origin of life. Surv. Geophys. 2002, 23, 379–409. [Google Scholar] [CrossRef]
- Strow, L.L.; Tobin, D.C.; McMillan, W.W.; Hannon, S.E.; Smith, W.L.; Revercomb, H.E.; Knuteson, R.O. Impact of a new water vapor continuum and lineshape model on observed high resolution infrared radiances. J. Quant. Spectr. Rad. Transfer 1998, 59, 303–317. [Google Scholar] [CrossRef]
- Menzel, W.P.; Tobin, D.C.; Revercomb, H.E. Infrared remote sensing with meteorological satellites. Adv. Atomic Molec. Phys. 2016, 65, 193–264. [Google Scholar]
- Mlawer, E.J.; Payne, V.H.; Moncet, J.-L.; Delamere, J.S.; Alvarado, M.J.; Tobin, D.C. Development and recent evaluation of the MT_CKD model of continuum absorption. Phil. Trans. R. Soc. A 2012, 370, 2520–2556. [Google Scholar] [CrossRef] [Green Version]
- Vaida, V.; Daniel, J.S.; Kjaergaard, H.G.; Goss, L.M.; Tuck, A.F. Atmospheric absorption of near infrared and visible solar radiation by the hydrogen bonded water dimer. Q. J. R. Meteorol. Soc. 2001, 127, 1627–1643. [Google Scholar] [CrossRef]
- Evans, G.T.; Vaida, V. Aggregation of water molecules: Atmospheric implications. J. Chem. Phys. 2000, 113, 6652–6659. [Google Scholar] [CrossRef]
- Vaida, V. Perspective: Water cluster mediated atmospheric chemistry. J. Chem. Phys. 2011, 135, 020901. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, D.J.; Frost, G.J.; Rosenlof, K.H.; Tuck, A.F.; Vaida, V. Atmospheric radical production by excitation of vibrational overtones via absorption of visible light. Geophys. Res. Lett. 1997, 24, 2651–2654. [Google Scholar] [CrossRef]
- Takahashi, K.; Taniguchi, N.; Sato, Y.; Matsumi, Y. Nonthermal steady state translational energy distributions of O(1D) atoms in the stratosphere. J. Geophys. Res. D 2002, 107, 4290. [Google Scholar] [CrossRef]
- Baloïtcha, E.; Balint-Kurti, G.G. The theory of the photodissociation of ozone in the Hartley continuum: Effect of vibrational excitation and O(1D) atom velocity distribution. Phys. Chem. Chem. Phys. 2005, 7, 3829–3833. [Google Scholar] [CrossRef] [PubMed]
- Goody, R.M.; Yung, Y.L. Atmospheric Radiation: Theoretical Basis, 2nd ed.; Oxford University Press: New York, NY, USA, 1989; ISBN 0-19-505134-3. [Google Scholar]
- Richard, E.C.; Vaida, V. The photochemical dynamics of the Ã2A2 state of chlorine dioxide. J. Chem. Phys. 1991, 94, 163–171. [Google Scholar] [CrossRef]
- Axson, J.L.; Washenfelder, R.A.; Kahan, T.F.; Young, C.J.; Vaida, V.; Brown, S.S. Absolute ozone absorption cross section in the Huggins Chappuis minimum (350–470 nm) at 296 K. Atmos. Chem. Phys. 2011, 11, 11581–111590. [Google Scholar] [CrossRef] [Green Version]
- Thiemens, M.H. Mass-independent isotope fractionations and their applications. ACS Symp. Ser. 1992, 502, 138–154. [Google Scholar]
- Yeung, L.Y.; Murray, L.T.; Ash, J.L.; Young, E.D.; Boering, K.A.; Atlas, E.L.; Schauffler, S.M.; Lueb, R.A.; Langenfelds, R.L.; Krummel, P.B.; et al. Isotopic ordering in atmospheric O2 as a tracer of ozone photochemistry and the tropical atmosphere. J. Geophys. Res. D 2016, 121, 12541–12559. [Google Scholar]
- Marcus, R.A. Strange and unconventional isotope effects in ozone formation. Science 2001, 293, 259–263. [Google Scholar]
- Wolf, Y.I.; Katsnelson, M.I.; Koonin, E.V. Physical foundations of biological complexity. Proc. Natl. Acad. Sci. USA 2018, 115, E8678–E8687. [Google Scholar] [CrossRef] [Green Version]
- Tuck, A.F.; Hovde, S.J.; Richard, E.C.; Fahey, D.W.; Gao, R.-S. A scaling analysis of ER-2 data in the inner vortex during January-March 2000. J. Geophys. Res. D 2002, 108, 8306. [Google Scholar] [CrossRef]
- Tuck, A.F.; Gao, R.-S.; Richard, E.C. Law of mass action in the Arctic lower-stratospheric polar night vortex January-March 2000: ClO scaling and the calculation of ozone loss rates in a turbulent fractal medium. J. Geophys. Res. D 2003, 108, 4451. [Google Scholar] [CrossRef]
- Donaldson, D.J.; Tuck, A.F.; Vaida, V. Spontaneous fission of atmospheric aerosol particles. Phys. Chem. Chem. Phys. 2001, 3, 5270–5273. [Google Scholar] [CrossRef]
- Donaldson, D.J.; Tervahattu, H.; Tuck, A.F.; Vaida, V. Organic aerosols and the origin of life: An hypothesis. Orig. Life Evol. Biosph. 2004, 34, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Deal, A.M.; Rapf, R.J.; Vaida, V. Water-air interfaces as environments to address the water paradox in prebiotic chemistry; a physical chemistry perspective. J. Phys. Chem A 2021, in press. [Google Scholar] [CrossRef]
- Tuck, A.F.; Hovde, S.J.; Bui, T.P. Scale invariance in jet streams: ER-2 data around the lower-stratospheric polar night vortex. Q. J. R. Meteorol. Soc. 2004, 130, 2423–2444. [Google Scholar] [CrossRef]
- Anderson, P.W. More is different—broken symmetry and the nature of the hierarchical structure of science. Science 1972, 177, 393–396. [Google Scholar] [CrossRef] [Green Version]
- Palmer, T.N. A nonlinear perspective on model error: A proposal for non-local stochastic-dynamical parameterization in weather and climate prediction models. Q. J. R. Meteorol. Soc. 2001, 127, 279–304. [Google Scholar] [CrossRef]
- Lovejoy, S. Weather, Macroweather and the Climate; Oxford University Press: Oxford, UK, 2019; ISBN 978-0-19-086421-7. [Google Scholar]
- Rapaport, D.C. The Art of Molecular Dynamics Simulation, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Evans, D.J.; Williams, S.R.; Searles, D.J. On the entropy of relaxing deterministic systems. J. Chem. Phys. 2011, 135, 194107. [Google Scholar] [CrossRef] [Green Version]
- Lovejoy, S.; Tuck, A.F.; Hovde, S.; Schertzer, D. Is isotropic turbulence relevant in the stratosphere? Geophys. Res. Lett. 2007, 34, L15802. [Google Scholar] [CrossRef]
- Solé, R.V.; Munteanu, A. The large-scale organization of chemical reaction networks in astrophysics. Europhys. Lett. 2004, 68, 170–176. [Google Scholar] [CrossRef] [Green Version]
- Tuck, A.F. Perspective on aircraft in the stratosphere: 50 years from COMESA through the ozone hole to climate. Q. J. R. Meteorol. Soc. 2021, 147, 713–727. [Google Scholar] [CrossRef]
- Hirschfelder, J.O.; Curtiss, C.F.; Bird, R.B. Molecular Theory of Gases and Liquids, 2nd ed.; Wiley: New York, NY, USA, 1964. [Google Scholar]
- Chapman, S.; Cowling, T.G. The Mathematical Theory of Non-Uniform Gases, 3rd ed.; Cambridge University Press: Cambridge, UK, 1970. [Google Scholar]
- Brooks, C.L.; Case, D.A.; Plimpton, S.; Rouse, B.; van der Spoel, D.; Tajkhorshid, E. Classical molecular dynamics. J. Chem. Phys. 2021, 154, 100401. [Google Scholar] [CrossRef] [PubMed]
Variable | Statistical Thermodynamics | Scaling Equivalent |
---|---|---|
Temperature | T | 1/qkBoltzmann |
Partition function | f | e−K(q) |
Energy | E | γ |
Entropy | −S(E) | c(γ) |
Gibbs free energy | −G | K(q)/q |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuck, A.F. Theoretical Chemistry and the Calculation of the Atmospheric State. Atmosphere 2021, 12, 727. https://doi.org/10.3390/atmos12060727
Tuck AF. Theoretical Chemistry and the Calculation of the Atmospheric State. Atmosphere. 2021; 12(6):727. https://doi.org/10.3390/atmos12060727
Chicago/Turabian StyleTuck, Adrian F. 2021. "Theoretical Chemistry and the Calculation of the Atmospheric State" Atmosphere 12, no. 6: 727. https://doi.org/10.3390/atmos12060727
APA StyleTuck, A. F. (2021). Theoretical Chemistry and the Calculation of the Atmospheric State. Atmosphere, 12(6), 727. https://doi.org/10.3390/atmos12060727