Long-Term eBC Measurements with the Use of MAAP in the Polluted Urban Atmosphere (Poland)
Abstract
:1. Introduction
2. Methods
2.1. Sampling Site
2.2. Multi-Angle Absorption Photometer 5012 (MAAP)
2.3. Statistical Analysis
3. Results
3.1. Concentrations of eBC
3.2. Seasonal Variations of eBC Concentrations
3.3. Identification of Factors Influencing the Concentration of eBC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Deng, X.; Seto, K.C. The impact of urban expansion on agricultural land use intensity in China. Land Use Policy 2013, 35, 33–39. [Google Scholar]
- Barbera, E.; Currò, C.; Valenti, G. A hyperbolic model for the effects of urbanization on air pollution. Appl. Math. Model. 2010, 34, 2192–2202. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Gao, S.; Li, S.; Feng, K. Strategizing the relation between urbanization and air pollution: Empirical evidence from global countries. J. Clean. Prod. 2020, 243, 118615. [Google Scholar] [CrossRef]
- Sofia, D.; Gioiella, F.; Lotrecchiano, N.; Giuliano, A. Mitigation strategies for reducing air pollution. Environ. Sci. Pollut. Res. 2020, 27, 19226–19235. [Google Scholar] [CrossRef]
- Gulia, S.; Nagendra, S.M.S.; Khare, M.; Khanna, I. Urban air quality management—A review. Atmos. Pollut. Res. 2015, 6, 286–304. [Google Scholar] [CrossRef] [Green Version]
- Baklanov, A.; Molina, L.T.; Gauss, M.M. Megacities, air quality and climate. Atmos. Environ. 2016, 126, 235–249. [Google Scholar] [CrossRef]
- Gulia, S.; Nagendra, S.M.S.; Barnes, J.; Khare, M. Urban local air quality management framework for non-attainment areas in Indian cities. Sci. Total Environ. 2018, 619–620, 1308–1318. [Google Scholar] [CrossRef]
- Othman, B.; De Nuzio, G.; Di Domenico, D.; Canudas-de-Wit, C. Ecological traffic management: A review of the modeling and control strategies for improving environmental sustainability of road transportation. Annu. Rev Control 2019, 48, 292–311. [Google Scholar] [CrossRef]
- European Environment Agency. Air Quality in Europe—2016 Report; EEA Report No 28/2016; Publication Office of the European Union: Luxembourg, 2016; ISBN 978-92-9213-847-9. [Google Scholar]
- European Environment Agency. Air Quality in Europe—2020 Report; EEA Report No 09/2020; Publication Office of the European Union: Luxembourg, 2020; ISBN 978-92-9480-292-7. [Google Scholar]
- World Health Organization. Burden of Disease from Ambient Air Pollution for 2012. Summary of Results. Available online: http://www.who.int/airpollution/data/AAP_BoD_results_March2014.pdf (accessed on 12 April 2021).
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Bernsten, T.; DeAngelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Kanakidou, M.; Seinfeld, J.H.; Pandis, S.N.; Barnes, I.; Dentener, F.J.; Facchini, M.C.; Van Dingenen, R.; Ervens, B.; Nenes, A.; Nielsen, C.J.; et al. Organic aerosol and global clomate modelling: A review. Atmos. Chem. Phys. 2005, 5, 1053–1123. [Google Scholar] [CrossRef] [Green Version]
- Putaud, J.P.; Cavalli, F.; Crippa, M. Long-Term Trends in Black Carbon from Biomass and Fossil Fuel Combustion Detected at the JRC Atmospheric Observatory in Ispra, EUR 29147 EN; JRC110502; Publications Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-80976-7. [Google Scholar]
- Zioła, N.; Błaszczak, B.; Klejnowski, K. Temporal Variability of Equivalent Black Carbon Components in Atmospheric Air in Southern Poland. Atmosphere 2021, 12, 119. [Google Scholar] [CrossRef]
- Petzold, A.; Ogren, J.A.; Fiebig, M.; Laj, P.; Li, S.-M.; Baltensperger, U.; Holzer-Popp, T.; Kinne, S.; Pappalardo, G.; Sugimoto, N.; et al. Recommendations for reporting “black carbon” measurements. Atmos. Chem. Phys. 2013, 13, 8365–8379. [Google Scholar] [CrossRef] [Green Version]
- Araya, R.T.; Flocchini, R.; Segura, R.G.E.M.; Guzmán, M.A.L. Carbonaceous Aerosols in Fine Particulate Matter of Santiago Metropolitan Area, Chile. Sci. World J. 2014, 2014, 794590. [Google Scholar]
- Magalhaes, S.; Baumgartner, J.; Weichenthal, S. Impacts of exposure to black carbon, elemental carbon, and ultrafine particles from indoor and outdoor sources on blood pressure in adults: A review of epidemiological evidence. Environ. Res. 2018, 161, 345–353. [Google Scholar] [CrossRef]
- Balakrishnaiah, G.; Ragjavendra-Kumar, K.; Suresh-Kumar Reddy, B.; Swamulu, C.; Rama-Gopal, K.; Reddy, R.R.; Reddy, L.S.S.; Nazeer-Ahammed, Y.; Narasimhulu, K.; Krishna-Moorthy, K. Anthropogenic impact on the temporal variations of black carbon and surface aerosol mass concentrations at a tropical semi-arid station in southeastern region of India. J. Asia Earth Sci. 2011, 42, 1297–1308. [Google Scholar] [CrossRef]
- EPA. Report to Congress on Black Carbon, Department of the Interior, Environment, and Related Agencies Appropriations Act; EPA-450/R12-001 March 2012; US Environmental Protection Agency: Washington, DC, USA, 2010.
- Simpson, D.; Yttri, K.E.; Klimont, Z.; Kupiainen, K.; Caseiro, A.; Gelencsér, A.; Pio, C.; Puxbaum, H.; Legrand, M. Modeling carbonaceous aerosol over Europe: Analysis of the CARBOSOL and EMEP EC/OC campaigns. J. Geophys. Res. 2007, 112, 1–26. [Google Scholar] [CrossRef]
- Kanaya, Y.; Taketani, F.; Komazaki, Y.; Liu, X.; Kondo, Y.; Sahu, L.K.; Irie, H.; Takashima, H. Comparison of Black Carbon Mass Concentrations Observed by multi-angle absorption photometer (MAAP) and continuous soot-monitoring system (COSMOS) on Fukue Island and in Tokyo, Japan. Aerosol Sci. Technol. 2013, 47, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Bauer, S.E.; Bausch, A.; Nazarenko, L.; Tsigardis, K.; Xu, B.; Edwards, R.; Bisiaux, M.; McConnell, J. Historical and future black carbon deposition on the three ice caps: Ice core measurements and model simulations from 1850 to 2100. J. Geophys. Res. Atmos. 2013, 118, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zanatta, M.; Gysel, M.; Bukowiecki, N.; Müller, T.; Weingartner, E.; Areskoug, H.; Fiebig, M.; Yttri, K.E.; Mihalopoulos, N.; Kouvarakis, G.; et al. A European aerosol phenomenology-5: Climatology of black carbon optical properties at 9 regional background sites across Europe. Atmos. Environ. 2016, 145, 346–364. [Google Scholar] [CrossRef]
- Cuesta-Morquera, A.; Močnik, G.; Drinovec, L.; Müller, T.; Pfeifer, S.; Minguillón, M.C.; Briel, B.; Buckley, P.; Dudoitis, V.; Fernández-García, J.; et al. Intercomparison and characterization of 23 Aethalometers under laboratory and ambient air conditions: Procedures and unit-to-unit variabilities. Atmos. Meas. Tech. 2021, 14, 3195–3216. [Google Scholar] [CrossRef]
- Ongeo, Geoportal Website. Available online: https://ongeo.pl/geoportal/zabrze/zanieczyszczenie-powietrza (accessed on 26 March 2021).
- Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. Available online: http://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX:32008L0050 (accessed on 11 June 2008).
- Błaszczak, B.; Mathews, B. Characteristics of carbonaceous matter in aerosol from selected urban and rural areas of Southern Poland. Atmosphere 2020, 11, 687. [Google Scholar] [CrossRef]
- Jabłońska, M. Phase Composition of Atmospheric Dust in Selected Localities of the Upper Silesian Industrial District; Scientific papers of the University of Silesia in Katowice; Publishing House of the University of Silesia: Katowice, Poland, 2003. (In Polish) [Google Scholar]
- Annex to the Resolution No. LX/719/18 of the City Council of Zabrze of 17 September 2018 on Adopting the Update of the Assumptions to the Heat, Electricity and Gas Fuel Supply Plan in the Area of the City of Zabrze. Available online: https://miastozabrze.pl/ (accessed on 6 April 2021). (In Polish).
- Petzold, A.; Kramer, H.; Schönlinner, M. Continuous Measurement of atmospheric black carbon using a multi-angle absorption photometer. Environ. Sci. Pollut. Res. 2002, 4, 78–82. [Google Scholar]
- Reche, C.; Querol, X.; Alastuey, A.; Viana, M.; Pey, J.; Moreno, T.; Rodríguez, S.; González, Y.; Fernández-Camacho, R.; Sánchez de la Campa, A.M.; et al. New considerations for PM, Black Carbon and particle number concentration for air quality monitoring across different European cities. Atmos. Chem. Phys. 2011, 11, 6207–6227. [Google Scholar] [CrossRef] [Green Version]
- Hyvärinen, A.-P.; Vakkari, V.; Laakso, L.; Hooda, R.K.; Sharma, V.P.; Panawar, T.S.; Beukes, J.P.; van Zyl, P.G.; Josipovic, M.; Garland, R.M.; et al. Correction for a measurement artifact of the Multi-Angle Absorption Photometer (MAAP) at high black carbon mass concentration levels. Atmos. Meas. Tech. 2013, 6, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Nordmann, S.; Birmili, W.; Weinhold, K.; Müller, K.; Spindler, G.; Wiedensohler, A. Measurements of the mass absorption cross section of atmospheric soot particles using Raman spectroscopy. J. Geophys. Res. Atmos. 2013, 118, 12075–12085. [Google Scholar] [CrossRef]
- Massling, A.; Nielsen, I.E.; Kristensen, D.; Christensen, J.H.; Sørensen, L.L.; Jensen, B.; Nguyen, Q.T.; Nøjgaard, J.K.; Glasius, M.; Skov, H. Atmospheric black carbon and sulfate concentrations in Northeast Greenland. Atmos. Chem. Phys. 2015, 15, 9681–9692. [Google Scholar] [CrossRef] [Green Version]
- Saturno, J.; Pöhlker, C.; Massabò, D.; Brito, J.; Carbone, S.; Cheng, Y.; Chi, X.; Ditas, F.; Hrabĕ de Angelis, I.; Moràn-Zuloaga, D. Comparison of different Aethalometer correction schemes and a reference multi-wavelength absorption technique for ambient aerosol data. Atmos. Meas. Tech. 2017, 10, 2837–2850. [Google Scholar] [CrossRef] [Green Version]
- MAAP Manual, 2009. Thermo Fisher Scientific Air Quality Instruments, Model 5012 Instruction Manual Multi Angle Absorption Photometer (MAAP) Software V1.32/1.33 Part Number 100076-00. Available online: https://tools.thermofisher.com/content/sfs/manuals/EPM-manual-Model%205012%20MAAP.pdf (accessed on 26 March 2021).
- Rattigan, O.V.; Civerolo, K.; Doraiswamy, P.; Felton, H.D.; Hopke, P.K. Long term black carbon measurements at two urban locations in New York. Aerosol Air Qual. Res. 2013, 13, 1181–1196. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Wang, Y.; Zhang, X.; Che, H.; Ming, J.; Yi, Z. Long-Term variation of black carbon aerosol in China based on revised aethalometer monitoring data. Atmosphere 2020, 11, 684. [Google Scholar] [CrossRef]
- Seneviratne, M.S.; Waduge, V.A.; Hadagiripathira, L.; Sanjeewani, S.; Attanayake, T.; Jayaratne, N.; Hopke, P.K. Characterization and source apportionment of particulate pollution in Colombo, Sri Lanka. Atmos. Pollut. Res. 2011, 2, 207–212. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, S.; Kumar, M.; Singh, R.S.; Rai, B.N.; Mall, R.K.; Banerjee, T. Long-term observation of black carbon aerosols at an urban location over the central Indo-Gangetic Plain, South Asia. Atmósfera 2019, 32, 95–113. [Google Scholar] [CrossRef] [Green Version]
- Helin, A.; Niemi, J.V.; Virkkula, A.; Pirjola, L.; Teinilä, K.; Backman, J.; Aurela, M.; Saarikoski, S.; Rönkkö, T.; Asmi, E.; et al. Characteristics and source apportionment of black carbon in the Helsinki metropolitan area, Finland. Atmos. Environ. 2018, 190, 87–98. [Google Scholar] [CrossRef]
- Becerril-Valle, M.; Coz, E.; Prévôt, A.S.H.; Močnik, G.; Pandis, S.N.; Sánchez de la Campa, A.M.; Alastuey, A.; Díaz, E.; Pérez, R.M.; Artíñano, B. Characterization of atmospheric black carbon and co-pollutants in urban and rural areas of Spain. Atmos. Environ. 2017, 169, 36–53. [Google Scholar] [CrossRef]
- Lyamani, H.; Olmo, F.J.; Foyo, I.; Alados-Arboledas, L. Black carbon aerosols over an urban area in south-eastern Spain: Changes detected after the 2008 economic crisis. Atmos. Environ. 2010, 45, 6423–6432. [Google Scholar] [CrossRef]
- Beekmann, M.; Prévôt, A.S.H.; Drewnick, F.; Sciare, J.; Pandis, S.N.; Denier van der Gon, H.A.C.; Crippa, M.; Freutel, F.; Poulain, L.; Ghersi, V.; et al. In Situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity. Atmos. Chem. Phys. 2015, 15, 9577–9591. [Google Scholar] [CrossRef] [Green Version]
- Kutzner, R.D.; von Schneidemesser, E.; Kuik, F.; Quedenau, J.; Weatherhead, E.C.; Schmale, J. Long-term monitoring of black carbon across Germany. Atmos. Environ. 2018, 185, 41–52. [Google Scholar] [CrossRef]
- Kucbel, M.; Corsaro, A.; Švédová, B.; Raclavská, H.; Raclavský, K.; Juchelková, D. Temporal and seasonal variations of black carbon in a highly polluted European city: Apportionment of potential sources and the effect of meteorological conditions. J. Environ. Manag. 2017, 203, 1178–1189. [Google Scholar] [CrossRef]
- Krecl, P.; Johansson, C.; Targino, A.C.; Ström, J.; Burman, L. Trends in black carbon and size-resolved particle number concentrations and vehicle emissions factors under real-world conditions. Atmos. Environ. 2017, 165, 155–168. [Google Scholar] [CrossRef]
- Ježek, I.; Blond, N.; Skupinski, G.; Močnik, G. The traffic emission-dispersion model for a Central-European city agrees with measured black carbon apportioned to traffic. Atmos. Environ. 2018, 184, 177–190. [Google Scholar] [CrossRef]
- Maciejewska, K.; Juda-Rezler, K.; Reizer, M.; Klejnowski, K. Modelling of black carbon statistical distribution and return periods of extreme concentrations. Environ. Model. Softw. 2015, 74, 212–226. [Google Scholar] [CrossRef]
- Sun, J.; Hermann, M.; Yuan, Y.; Birmili, W.; Coen, M.C.; Weinhold, K.; Madueno, L.; Poulain, L.; Touch, T.; Ries, L.; et al. Long-term trends of black carbon and particle number concentration in the lower free troposphere in Central Europe. Environ. Sci. Eur. 2021, 33, 43. [Google Scholar] [CrossRef]
- Weller, R.; Minikin, A.; Petzold, A.; Wagenbach, D.; König-Langlo, G. Characterization of long-term and seasonal variations of black carbon (BC) concentrations at Neumayer, Antarctica. Atmos. Chem. Phys. 2013, 13, 1579–1590. [Google Scholar] [CrossRef] [Green Version]
- Dębski, B.; Olecka, A.; Bebkiewicz, K.; Chłopek, Z.; Kargulewicz, I.; Rutkowski, J.; Zasina, D.; Zimakowska-Laskowska, M.; Żaczek, M.; Waśniewska, S. The National Centre for Emissions Management. Poland’s Informative Inventory Report 2018. Submission under the UN ECE Convention on Long-range Transboundary Air Pollution and the DIRECTIVE (EU) 2016/2284; Warsaw, February 2018. Available online: https://www.kobize.pl/pl/fileCategory/list (accessed on 7 April 2021).
- Liu, Q.; Ma, T.; Olson, M.R.; Liu, Y.; Zhang, T.; Wu, Y.; Schauer, J.J. Temporal variations of black carbon during haze and non-haze days in Beijing. Sci. Rep. 2016, 6, 33331. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, J.; Sun, X.; Xu, S.; Shan, M.; Yuan, Q.; Liu, L.; Du, Z.; Liu, D.; Xu, D.; et al. Variation in concentration and sources of black carbon in a megacity of China during the COVID-19 pandemic. Geophys. Res. Lett. 2020, 47, e2020GL090444. [Google Scholar] [CrossRef]
- Guha, A.; De, B.K.; Dhar, P.; Banik, T.; Chakraborty, M.; Roy, R.; Choudhury, A.; Gogoi, M.M.; Babu, S.S.; Moorthy, K.K. Seasonal characteristics of aerosol black carbon in relation to long range transport over Tripura in Northeast India. Aerosol Air Qual. Res. 2015, 15, 786–798. [Google Scholar] [CrossRef] [Green Version]
- Bibi, S.; Alam, K.; Chishtie, F.; Bibi, H.; Rahman, S. Temporal variation of Black Carbon concentration using Aethalometer observations and its relationships with meteorological variables in Karachi, Pakistan. J. Atmos. Sol. Terr. Phys 2017, 157–158, 67–77. [Google Scholar] [CrossRef]
- Sharma, S.; Lavoué, D.; Cachier, H.; Barrie, L.A.; Gong, S.L. Long-term trends of the black carbon concentrations in the Canadian Arctic. J. Geophys. Res. 2004, 109, D15203. [Google Scholar] [CrossRef]
- Zioła, N.; Słaby, K. The Content of Selected Heavy Metals and Polycyclic Aromatic Hydrocarbons (PAHs) in PM10 in Urban-Industrial Area. Sustainability 2020, 12, 5284. [Google Scholar] [CrossRef]
- Jhun, I.; Coull, B.; Schwartz, J.; Hubbell, B.; Koutrakis, P. The impact of weather changes on air quality and health in the United States in 1994–2012. Environ. Res. Lett. 2015, 10, 084009. [Google Scholar] [CrossRef] [Green Version]
- Błaszczak, B.; Zioła, N.; Mathews, B.; Klejnowski, K.; Słaby, K. The Role of PM2.5 chemical composition and meteorology during high pollution periods at a suburban background station in Southern Poland. Aerosol Air Qual. Res. 2020, 20, 2433–2447. [Google Scholar] [CrossRef]
- Safai, P.D.; Kewat, S.; Praveen, P.S.; Rao, P.S.P.; Momin, G.A.; Ali, K.; Devara, P.C.S. Seasonal variation of black carbon aerosols over a tropical urban city of Pune, India. Atmos. Environ. 2007, 41, 2699–2709. [Google Scholar] [CrossRef]
- Zhang, X.; Rao, R.; Huang, Y.; Mao, M.; Berg, M.J.; Sun, W. Black carbon aerosols in urban central China. J. Quant. Spectrosc. Radiat. Transf. 2015, 150, 3–11. [Google Scholar] [CrossRef]
- Rogula-Kozłowska, W.; Klejnowski, K.; Rogula-Kopiec, P.; Ośródka, L.; Krajny, E.; Błaszczak, B.; Mathews, B. Spatial and seasonal variability of the mass concentrations and chemical composition of PM2.5 in Poland. Air Qual. Atmos. Health 2014, 7, 41–58. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Barth, M.C.; Pfister, G.G.; Nair, V.S.; Ghude, S.D.; Ojha, N. What controls the seasonal cycle of black carbon aerosols in India? J. Geophys. Res. Atmos. 2015, 120, 7788–7812. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Raju, M.P.; Singh, R.K.; Singh, A.K.; Singh, R.S.; Banerjee, T. Wintertime characteristics of aerosols over middle Indo-Gangetic Plain: Vertical profile, transport and radiative forcing. Atmos. Res. 2017, 183, 268–282. [Google Scholar] [CrossRef]
- Galindo, N.; Varea, M.; Gil-Moltó, J.; Yubero, E.; Nicolás, J. The Influence of meteorology on particulate matter concentrations at an urban mediterranean location. Water Air Soil Pollut. 2011, 215, 365–372. [Google Scholar] [CrossRef]
- Järvi, L.; Junninen, H.; Karppinen, A.; Hillamo, R.; Virkkula, A.; Mäkelä, T.; Pakkanen, T.; Kulmala, M. Temporal variations in black carbon concentrations with different time scales in Helsinki during 1996–2005. Atmos. Chem. Phys. 2008, 8, 1017–1027. [Google Scholar] [CrossRef] [Green Version]
- Milesi, C.; Churkina, G. Measuring and Monitoring Urban Impacts on climate Change from Space. Remote Sens. 2020, 12, 3494. [Google Scholar] [CrossRef]
- Tiwari, S.; Srivastava, A.K.; Bisht, D.S.; Parmita, P.; Srivastava, M.K.; Attri, S.D. Diurnal and seasonal variations of black carbon and PM2.5 over New Delhi, India: Influence of meteorology. Atmos. Res. 2013, 125–126, 50–62. [Google Scholar] [CrossRef]
- Choi, Y.; Ghim, Y.S.; Zhang, Y.; Park, S.-M.; Song, I.-H. Estimation of Surface concentrations of black carbon from long-term measurements at aeronet sites over Korea. Remote Sens. 2020, 12, 3904. [Google Scholar] [CrossRef]
- Badarinath, K.V.S.; Kumar Kharol, S.; Kiran Chand, T.R.; Parvathi, Y.G.; Anasuya, T.; Jyothsna, A.N. Variations in black carbon aerosol, carbon monoxide and ozone over an urban area of Hyderabad, India, during the forest fire season. Atmos. Res. 2007, 85, 18–26. [Google Scholar] [CrossRef]
- Limon-Sanchez, M.T.; Carbajal-Romero, P.; Hernandez-Mena, L.; Saldarriaga-Norena, H.; Lopez-Lopez, A.; Cosio-Ramirez, R.; Arriaga-Colina, J.L.; Smith, W. Black carbon in PM2.5, data from two urban sites in Guadalajara, Mexico during 2008. Atmos. Pollut. Res. 2011, 2, 358–365. [Google Scholar] [CrossRef] [Green Version]
- United States Environmental Protection Agency. Latest Findings on National Air Quality; Status and trends through 2006; United States Environmental Protection Agency: Research Triangle Park, NC, USA, January 2008. Available online: https://nepis.epa.gov/Exe/ZyPDF.cgi/60000MXE.PDF?Dockey=60000MXE.PDF (accessed on 26 April 2021).
- Kassomenos, P.A.; Vardoulakis, S.; Chaloulakou, A.; Pschalidou, A.K.; Grivas, G.; Borge, R.; Lumbreras, J. Study of PM10 and PM2.5 levels in three European cities: Analysis of intra and inter urban variations. Atmos. Environ. 2014, 87, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Dahiya, S.; Anhäuser, A.; Farrow, A.; Thieriot, H.; Kumar, A.; Myllyvirta, L. Global SO2 Emission Hotspot Database; Center for Research on Energy and Clean Air & Greenpeace India: Delhi, India, October 2020; p. 48. Available online: https://www.greenpeace.org/static/planet4-mena-stateless/a372e5fe-so2-report-english.pdf (accessed on 4 May 2021).
- World Health Organization. Health Effects of Particulate Matter. Policy Implications for Countries in Eastern Europe, Caucasus and central Asia; WHO Regional Office for Europe: Copenhagen, Denmark, 2013; ISBN 978-92-890-0001-7. [Google Scholar]
- Venkatachari, P.; Zhou, L.; Hopke, P.K.; Felton, D.; Rattigan, O.V.; Schwab, J.J.; Demerjian, K.L. Spatial and temporal variability of black carbon in New York City. J. Geophys. Res. Atmos. 2006, 111, 1–9. [Google Scholar] [CrossRef]
- Bystrzanowski, Ł.; Kubiczek, K.; Zastrzeżyńska, J. Environmental Protection Program for the City of Zabrze until 2024 with a Perspective until 2028; Annex to Resolution No. XVII/305/20 of the Zabrze City Council of 17 February 2020. Provincial Fund for Environmental Protection and Water Management in Katowice, 2019. Available online: https://bip.miastozabrze.pl/engine//bip/451/239?o=tp1&e=s|239 (accessed on 17 May 2021). (In Polish).
- The Website of Central Statistical Office—Local Data Bank. Available online: https://bdl.stat.gov.pl/BDL/start (accessed on 12 April 2021).
- Feliciano, M.; Gonçalves, A.; Cardoso, A.; Nunes, T.; Nunes, L.; Cortez, P.; Ribeiro, A.; Rodrigues, O.; Castro, J.; Martins, L. The role of green spaces on urban environmental quality. In Proceedings of the 2nd International Conference on Environmental Research and Assessment, Bucharest, Romania, 5–8 October 2006; Pătroescu, M., Matache, M.L., Eds.; University of Bucharest, Centre for Environmental Research and Impact Studies: Bucharest, Romania; pp. 233–249. [Google Scholar]
- Nero, B.F.; Callo-Concha, D.; Anning, A.; Denich, M. Urban green spaces enchance climate change mitigation in cities of the global south: The case of Kumasi, Ghana. Procedia Eng. 2017, 198, 69–83. [Google Scholar] [CrossRef]
- Hewitt, C.N.; Ashworth, K.; MacKenzie, A.R. Using green infrastructure to improve urban air quality (GI4AQ). Ambio 2020, 49, 62–73. [Google Scholar] [CrossRef] [Green Version]
- Schifman, L.A.; Prues, A.; Gilkey, K.; Shuster, W.D. Realizing the opportunities of black carbon in urban soils: Implications for water quality management with green infrastructure. Sci. Total Environ. 2018, 10, 1027–1035. [Google Scholar] [CrossRef]
Period | Time Coverage (%) | Ave | SD | Median | Min | Max | Variance | Coefficient of Change (%) |
---|---|---|---|---|---|---|---|---|
All period | 90 | 3.82 | 4.23 | 2.05 | 0.00 | 49.19 | 17.89 | 110.78 |
2010 | 99 | 4.71 | 4.89 | 2.75 | 0.00 | 37.86 | 23.87 | 103.66 |
2011 | 99 | 3.45 | 4.78 | 1.10 | 0.00 | 36.70 | 22.87 | 138.52 |
2012 | 100 | 3.83 | 4.25 | 1.99 | 0.00 | 31.50 | 18.04 | 110.75 |
2013 | 83 | 3.26 | 3.18 | 2.09 | 0.00 | 26.25 | 10.10 | 97.45 |
2014 | 78 | 3.63 | 3.69 | 2.11 | 0.00 | 26.75 | 13.61 | 101.72 |
2015 | 79 | 3.82 | 3.93 | 2.25 | 0.10 | 33.72 | 15.47 | 103.00 |
2016 | 82 | 4.51 | 4.42 | 2.76 | 0.09 | 28.74 | 19.52 | 98.05 |
2017 | 94 | 3.77 | 4.48 | 1.93 | 0.06 | 49.19 | 20.04 | 118.61 |
2018 | 93 | 3.73 | 4.02 | 1.96 | 0.00 | 27.32 | 16.18 | 107.77 |
2019 | 90 | 3.40 | 3.95 | 1.65 | 0.04 | 28.16 | 15.60 | 116.09 |
2020 | 98 | 2.85 | 3.10 | 1.68 | 0.04 | 31.81 | 9.62 | 108.75 |
Period | Time Coverage (%) | Ave | SD | Median | Min | Max | Variance | Coefficient of Change (%) |
---|---|---|---|---|---|---|---|---|
2009/2010 (H) | 93 | 6.78 | 5.09 | 5.90 | 0.04 | 33.40 | 25.95 | 75.08 |
2010 (NH) | 100 | 2.51 | 2.74 | 1.53 | 0.00 | 18.34 | 7.51 | 109.18 |
2010/2011 (H) | 99 | 7.37 | 5.58 | 6.47 | 0.17 | 37.86 | 31.15 | 75.74 |
2011 (NH) | 100 | 0.86 | 1.13 | 0.52 | 0.01 | 11.12 | 1.29 | 132.19 |
2011/2012 (H) | 98 | 5.40 | 5.44 | 3.74 | 0.00 | 36.70 | 29.55 | 100.64 |
2012 (NH) | 100 | 1.82 | 1.97 | 1.14 | 0.00 | 15.37 | 3.88 | 107.95 |
2012/2013 (H) | 100 | 5.20 | 4.41 | 3.71 | 0.03 | 29.56 | 19.41 | 84.68 |
2013 (NH) | 96 | 2.32 | 2.29 | 1.50 | 0.07 | 15.83 | 5.24 | 98.77 |
2013/2014 (H) | 51 | 7.40 | 4.42 | 7.34 | 0.00 | 26.75 | 19.55 | 59.76 |
2014 (NH) | 88 | 1.84 | 1.71 | 1.31 | 0.03 | 12.56 | 2.91 | 92.81 |
2014/2015 (H) | 74 | 5.05 | 3.74 | 4.15 | 0.00 | 21.05 | 14.02 | 74.13 |
2015 (NH) | 86 | 1.92 | 1.89 | 1.31 | 0.10 | 18.42 | 3.56 | 98.28 |
2015/2016 (H) | 81 | 6.47 | 4.95 | 5.48 | 0.10 | 33.72 | 24.55 | 76.63 |
2016 (NH) | 66 | 2.11 | 2.21 | 1.29 | 0.14 | 16.21 | 4.90 | 105.14 |
2016/2017 (H) | 93 | 6.42 | 5.46 | 5.15 | 0.09 | 49.19 | 29.80 | 85.04 |
2017 (NH) | 98 | 1.70 | 1.82 | 1.06 | 0.06 | 12.52 | 3.30 | 106.95 |
2017/2018 (H) | 90 | 5.88 | 4.33 | 4.99 | 0.00 | 26.45 | 18.77 | 73.66 |
2018 (NH) | 93 | 1.41 | 1.48 | 0.98 | 0.04 | 19.19 | 2.19 | 104.91 |
2018/2019 (H) | 81 | 5.70 | 4.79 | 4.40 | 0.08 | 28.16 | 22.93 | 84.02 |
2019 (NH) | 96 | 1.57 | 1.78 | 0.97 | 0.04 | 15.51 | 3.18 | 113.45 |
2019/2020 (H) | 99 | 4.77 | 4.06 | 3.50 | 0.06 | 31.81 | 16.52 | 85.23 |
2020 (NH) | 97 | 1.55 | 1.76 | 0.92 | 0.04 | 11.98 | 3.08 | 112.96 |
Parameter | Correlation Coefficient (r) | ||
---|---|---|---|
All Periods | Non-Heating Season | Heating Season | |
Temperature | −0.63 | −0.49 | −0.27 |
Relative humidity | 0.28 | 0.25 | −0.03 |
Pressure | 0.13 | 0.13 | 0.10 |
Wind speed | 0.00 | −0.09 | −0.62 |
Precipitation | −0.16 | −0.18 | −0.20 |
Specification | PM10 | PM2.5 | SO2 | NO | NO2 | NOx | O3 | CO |
---|---|---|---|---|---|---|---|---|
All periods | 0.84 | 0.89 | 0.82 | 0.79 | 0.80 | 0.84 | −0.69 | 0.87 |
Non-heating period | 0.90 | 0.89 | 0.84 | 0.79 | 0.82 | 0.86 | −0.55 | 0.86 |
Heating period | 0.78 | 0.85 | 0.73 | 0.76 | 0.79 | 0.83 | −0.54 | 0.83 |
Specification | Correlation with BC | |
---|---|---|
Emission of gaseous pollutants (t/y) | total (without CO2) | 0.77 |
SO2 | 0.83 | |
Methane | 0.77 | |
Emission of particulate pollutants (t/y) | Total | 0.60 |
on 1 km2 of the area | 0.60 | |
from fuel combustion | 0.77 | |
Apartments equipped with central heating installations (% of total) | −0.66 | |
Gas-heated households (units) | −0.66 | |
Electricity consumption in households (kWh) | 0.54 | |
Length of the heat transmission and distribution network (km) | −0.83 | |
Total number of newly registered motor vehicles | −0.66 | |
Expenditure on the maintenance of green areas (% of the total) | −0.94 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zioła, N.; Błaszczak, B.; Klejnowski, K. Long-Term eBC Measurements with the Use of MAAP in the Polluted Urban Atmosphere (Poland). Atmosphere 2021, 12, 808. https://doi.org/10.3390/atmos12070808
Zioła N, Błaszczak B, Klejnowski K. Long-Term eBC Measurements with the Use of MAAP in the Polluted Urban Atmosphere (Poland). Atmosphere. 2021; 12(7):808. https://doi.org/10.3390/atmos12070808
Chicago/Turabian StyleZioła, Natalia, Barbara Błaszczak, and Krzysztof Klejnowski. 2021. "Long-Term eBC Measurements with the Use of MAAP in the Polluted Urban Atmosphere (Poland)" Atmosphere 12, no. 7: 808. https://doi.org/10.3390/atmos12070808
APA StyleZioła, N., Błaszczak, B., & Klejnowski, K. (2021). Long-Term eBC Measurements with the Use of MAAP in the Polluted Urban Atmosphere (Poland). Atmosphere, 12(7), 808. https://doi.org/10.3390/atmos12070808