Assessing Hydrological Impact of Forested Area Change: A Remote Sensing Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
- The surface of the river basin must be covered as much as possible by forest;
- There are no human settlements or elements of infrastructure that would lead to the permanent reduction in forested areas;
- Afforestation and deforestation actions were detected in the focus area over recent decades.
2.2. Data Used
2.2.1. Precipitation
2.2.2. Runoff Data
2.2.3. Satellite Images
2.3. Methods
- The amount of precipitation falling in a certain area;
- The evolution of the forest area over a certain period of time (afforestation and deforestation actions) in the focus region;
- The evolution of potential evapotranspiration;
- The amount of water drained (flow) at the closing section of the analyzed basin.
2.3.1. Estimating the Amount of Precipitation
2.3.2. Evolution of Forest Area and Density
- The image collection period should be in the interval between the end of May and the start of October so that the phenophase of the forest is somewhat similar, fully developed canopy;
- The analyzed surfaces should not be covered by clouds.
2.3.3. Evaluation of the Method for Determining the FCD Index
2.4. Analysis of Precipitation Values and Flow Hydrographs Related to the Evolution of Forest Surfaces
2.5. Hydrologic Model
2.5.1. The Basin Model
2.5.2. Soil Conservation Service (SCS) Generalized (CN) Loss Method
Establishing the Soil Hydrological Groups
CN Calculation
2.5.3. Model Calibration and Event Isolation
2.5.4. Simulated Land Use Change Scenarios
3. Results
3.1. Delimitation of Forest-Covered Areas Using the FCD Index
Evaluation of the Method for Determining the FCD Index
3.2. The Impact of Changes in Forested Areas on Peak Flood Discharges
3.3. Limitations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vazken, A. Waters and forests: From historical controversy to scientific debate. J. Hydrol. 2004, 291, 1–27. [Google Scholar] [CrossRef]
- De Niel, J.; Willems, P. Climate or land cover variations: What is driving observed changes in river peak flows? A data-based attribution study. Hydrol. Earth Syst. Sci. 2019, 23, 871–882. [Google Scholar] [CrossRef]
- Arheimer, B.; Lindström, G. Detecting changes in river flow caused by wildfires, storms, urbanization, regulation, and climate across Sweden. Water Resour. Res. 2019, 55, 8990–9005. [Google Scholar] [CrossRef]
- Bernsteinová, J.; Bässler, C.; Zimmermann, L.; Langhammer, J.; Beudert, B. Changes in runoff in two neighbouring catchments in the Bohemian Forest related to climate and land cover changes. J. Hydrol. Hydromech. 2015, 63, 342–352. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.S.; Lim, C.-H.; Kim, S.J.; Lee, J.; Son, Y.; Lee, W.-K. Effect of National-Scale Afforestation on Forest Water Supply and Soil Loss in South Korea, 1971–2010. Sustainability 2017, 9, 1017. [Google Scholar] [CrossRef] [Green Version]
- Adams, H.D.; Guardiola-Claramonte, M.; Barron-Gafford, G.A.; Villegas, J.C.; Breshears, D.D.; Zou, C.B.; Troch, P.A.; Huxman, T.E. Temperature sensitivity of drought-induced tree mortality portends increased regional die-off under global-change-type drought. Proc. Natl. Acad. Sci. USA 2009, 106, 7063–7066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiprotich, P.; Wei, X.H.; Zhang, Z.K.; Ngigi, T.; Qiu, F.T.; Wang, L.H. Assessing the Impact of Land Use and Climate Change on Surface Runoff Response Using Gridded Observations and SWAT+. Hydrology 2021, 8, 48. [Google Scholar] [CrossRef]
- Ceglar, A.; Croitoru, A.-E.; Cuxart, J.; Djurdjevic, V.; Güttler, I.; Ivančan-Picek, B.; Jug, D.; Lakatos, M.; Weidinger, T. PannEx: The Pannonian Basin Experiment. Clim. Serv. 2018, 11, 78–85, ISSN 2405-8807. [Google Scholar] [CrossRef]
- Hallegatte, S.; Green, C.; Nicholls, R.J.; Corfee-Morlot, J. Future flood losses in major coastal cities. Nat. Clim. Chang. 2013, 3, 802–806. [Google Scholar] [CrossRef]
- Knapp, A.K.; Beier, C.; Briske, D.D.; Classen, A.T.; Luo, Y.; Reichstein, M.; Heisler, J.L. Consequences of more extreme precipitation regimes for terrestrial ecosystems. Bioscience 2008, 58, 811–821. [Google Scholar] [CrossRef]
- Croitoru, A.-E.; Piticar, A.; Burada, D.C. Changes in precipitation extremes in Romania. Quat. Int. 2016, 415, 325–335, ISSN 1040-6182. [Google Scholar] [CrossRef]
- Croitoru, A.-E.; Minea, I. The impact of climate changes on rivers discharge in Eastern Romania. Theor. Appl. Climatol. 2015, 120, 563–573. [Google Scholar] [CrossRef]
- Pollner, J.; Kryspin-Watson, J.; Nieuwejaar, S. Disaster Risk Management and Climate Change Adaptation in Europe and Central Asia; The World Bank and Global Facility for Disaster Reduction and Recovery: Washington, DC, USA, 2010. [Google Scholar]
- Azizi, Z.; Najafi, A.; Sohrabi, H. Forest Canopy Density Estimating, Using Satellite Images. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 2008, XXXVII, 1127–1130. [Google Scholar]
- Bradshaw, C.J.A.; Sodhi, N.S.; Peh, K.S.-H.; Brook, B.W. Global evidence that deforestation amplifies flood risk and severity in the developing world. Glob. Chang. Biol. 2007, 13, 2379–2395. [Google Scholar] [CrossRef]
- Bonell, M. Progress in the understanding of runoff generation dynamics in forests. J. Hydrol. 1993, 150, 217–275. [Google Scholar] [CrossRef]
- Ian, R. Calder and Bruce Aylward, Forests and Floods: Moving to an Evidence-based Approach to Watershed and Integrated Flood Management. Water Int. 2006, 31, 541–543. [Google Scholar] [CrossRef]
- Kabeja, C.; Li, R.; Guo, J.; Rwatangabo, D.E.R.; Manyifika, M.; Gao, Z.; Wang, Y.; Zhang, Y. The Impact of Reforestation Induced Land Cover Change (1990–2017) on Flood Peak Discharge Using HEC-HMS Hydrological Model and Satellite Observations: A Study in Two Mountain Basins, China. Water 2020, 12, 1347. [Google Scholar] [CrossRef]
- Park, J.Y.; Ahn, S.R.; Hwang, S.J.; Jang, C.H.; Park, G.A.; Kim, S.J. Evaluation of MODIS NDVI and LST for indicating soil moisture of forest areas based on SWAT modeling. Paddy Water Environ. 2014, 12, 77–88. [Google Scholar] [CrossRef]
- Dwarakish, B.P. Ganasri. Impact of land use change on hydrological systems: A review of current modeling approaches. Cogent Geosci. 2015, 1, 1115691. [Google Scholar] [CrossRef]
- Martin, N. Risk Assessment of Future Climate and Land Use/Land Cover Change Impacts on Water Resources. Hydrology 2021, 38, 38. [Google Scholar] [CrossRef]
- Romanian National Projects~Flood Risk Management Plan of Someș—Tisa Water Basin Administration. 2016. Available online: https://rowater.ro (accessed on 15 February 2021).
- Romanian National Projects~Plan for the Prevention, Protection and Mitigation of the Effects of Floods on the Someș—Tisa Water Basin PPPDEI (2014), (Planul Pentru Prevenirea, Protecția și Diminuarea Efectelor Inundațiilor în Bazinul Hidrografic Someș Tisa, in Romanian). Available online: http://www.rowater.ro/dasomes/Documente/Proiect%20PPPDEI/PPDEI_varianta_initiala.pdf (accessed on 15 February 2021).
- Romanian Law no. 107/1996—“Water Law”, with Subsequent Amendments and Completions (Legea nr. 107/1996—Legea Apelor, cu Modificările şi Completările Ulterioare); Autonoma, R. (Ed.) Monitorul Oficial: Bucureşti, Romania; Available online: http://www.vertic.org/media/National%20Legislation/Romania/RO_Water_Law_1996.pdf (accessed on 14 May 2021).
- Cornes, R.; van der Schrier, G.; van den Besselaar, E.J.M.; Jones, P.D. An Ensemble Version of the E-OBS Temperature and Precipitation Datasets. J. Geophys. Res. Atmos. 2018, 123. [Google Scholar] [CrossRef] [Green Version]
- Website of the European Climate Assessment & Dataset Project. Available online: https://www.ecad.eu/ (accessed on 15 February 2021).
- Sidău, M.R.; Croitoru, A.-E.; Alexandru, D.E. Comparative analysis between daily extreme temperature and precipitation values derived from observation and gridded datasets in northwestern Romania. Atmosphere 2021, 12, 361. [Google Scholar] [CrossRef]
- Website of USGS Global Visualization Viewer (GloVis). Available online: http://glovis.usgs.gov/ (accessed on 15 February 2021).
- Geoportal ANCPI. Available online: https://geoportal.ancpi.ro/portal/ (accessed on 17 February 2021).
- Pompiliu, M. The Runoff Coefficient of the Water in Rivers (in Romanian—Coeficientul de Scurgere a Apei în Râuri); Edit Academiei: București, România, 2019. [Google Scholar]
- Roy, P.; Rikimaru, A.; Miyatake, S. Tropical forest cover density mapping. Trop. Ecol. 2002, 43, 39–47. [Google Scholar]
- Rikimaru, A. The Concept of FCD Mapping Model and Semi-Expert System. FCD Mapper User’s Guide; International Tropical Timber Organization and Japan Overseas Forestry Consultants Association: Yokohama, Japan, 1999; p. 90. [Google Scholar]
- Loi, D.T.; Chou, T.-Y.; Fang, Y.-M. Integration of GIS and Remote Sensing for Evaluating Forest Canopy Density Index in Thai Nguyen Province, Vietnam. Int. J. Environ. Sci. Dev. 2017, 8, 539–542. [Google Scholar] [CrossRef] [Green Version]
- Jennings, S.; Brown, N.; Sheil, D. Assessing Forest Canopies and Understorey Illumination: Canopy Closure, Canopy Cover and Other Measures. Forestry 1999, 71, 59–73. [Google Scholar] [CrossRef]
- Dragoi, M.; Toza, V. Did Forestland Restitution Facilitate Institutional Amnesia? Some Evidence from Romanian Forest Policy. Land 2019, 8, 99. [Google Scholar] [CrossRef] [Green Version]
- Mihai, B. Remote Sensing. Introduction to Digital Image Processing (in Romanian—Teledetectie. Vol 1. Procesarea Digitala a Imaginilor); Universitatii din Bucuresti: Bucuresti, Romania, 2007; p. 208. [Google Scholar]
- Mchugh, M.L. Interrater reliability: The kappa statistic. Biochem. Med. 2012, 276–282. [Google Scholar] [CrossRef]
- DHI. MIKE 11: A Modeling System for Rivers and Channels; Reference Manual; Danish Hydraulic Institute: Hørsholm, Denmark, 2017. [Google Scholar]
- Soil Conservation Service. National Engineering Handbook, Section 4, Hydrology; Department of Agriculture: Washington, DC, USA, 1972; 762p.
- Kocsis, I.; Haidu, I.; Maier, N. Application of a Hydrological Mike Hydro River—UHM Model for Valea Rea River (Romania). Case Study, Flash Flood Event Occurred On 1 August 2019. In Proceedings of the Air and Water–Components of the Environment, Cluj-Napoca, Romania, 20–22 March 2020. [Google Scholar] [CrossRef]
- Chendeş, V. Water Resources in Curvature Subcarpathians. Geospatial Assessments (in Romanian—Resursele de Apă Din Subcarpaţii de la Curbură. Evaluări Geospaţiale; Romanian Academy Publishing: Bucharest, Romania, 2011. [Google Scholar]
- Gomes, L.C.; Bianchi, F.J.J.A.; Cardoso, I.M.; Schulte, R.P.O.; Fernandes, R.B.A.; Fernandes-Filho, E.I. Disentangling the historic and future impacts of land use changes and climate variability on the hydrology of a mountain region in Brazil. J. Hydrol. 2021, 594, 125650. [Google Scholar] [CrossRef]
- Truong, N.C.Q.; Nguyen, H.Q.; Kondoh, A. Land Use and Land Cover Changes and Their Effect on the Flow Regime in the Upstream Dong Nai River Basin, Vietnam. Water 2018, 10, 1206. [Google Scholar] [CrossRef] [Green Version]
- Bartholy, J.; Bartók, B.; Bede-Fazekas, Á.; Belušić, A.; Bihari, Z.; Birkás, M.; Bozó, L.; Brmež, M.; Brozović, B.; Ceglar, A.; et al. PannEx White Book, A GEWEX Regional Hydroclimate Project (RHP) over the Pannonian Basin; WCRP Report 3/2019; World Climate Research Programme (WCRP): Geneva, Switzerland, 2019; p. 108. [Google Scholar]
Sensor | Data | PATH/ROW | Scene Center Time |
---|---|---|---|
Landsat 5 TM | 14 August 1985 | 184/027 | 08:38:11.6210310Z |
Landsat 5 TM | 25 September 1992 | 185/027 | 08:36:35.8650620Z |
Landsat 5 TM | 10 September 1998 | 185/027 | 08:53:24.1940000Z |
Landsat 5 TM | 16 July 2001 | 185/027 | 08:55:05.7030940Z |
Landsat 7 ETM | 27 May 2003 | 185/027 | 09:03:24.1067109Z |
Landsat 5 TM | 13 August 2008 | 185/027 | 08:54:29.1940500Z |
Landsat 8 OLI_TIRS | 5 October 2013 | 185/027 | 09:16:35.6672900Z |
Landsat 8 OLI_TIRS | 8 August 2015 | 185/027 | 09:14:20.7774850Z |
Landsat 8 OLI_TIRS | 14 September 2017 | 185/027 | 09:14:48.6049790Z |
Landsat 8 OLI_TIRS | 19 August 2019 | 185/027 | 09:14:51.5805550Z |
Nr.crt | Land Use | Hydrologic Soil Group | |||
---|---|---|---|---|---|
A | B | C | D | ||
1 | Discontinuous urban fabric | - | 89 | - | - |
2 | Pastures | - | 69 | - | - |
3 | Broad-leaved forest | - | 66 | - | - |
4 | Coniferous forest | 34 | 60 | 73 | - |
5 | Mixed forest | 38 | 62 | 75 | - |
6 | Natural grasslands | 49 | 69 | 79 | - |
7 | Moors and heathland | 49 | 69 | - | - |
8 | Transitional woodland-shrub | 45 | 60 | - | - |
Hydraulic Length (km) | Slope (%) | Baseflow (m3/s) | Catchment Area km2 |
---|---|---|---|
6.124 km | 42.5 | 2 | 185.656 |
Year | Forest | Non-Forest | Forest | Total | User’s Accuracy | Kappa Coefficient |
---|---|---|---|---|---|---|
1985 | Non-Forest | 2 | 6 | 8 | 0.65 | 0.186 |
Forest | 1 | 11 | 12 | |||
Total | 3 | 17 | 13 | |||
Producer’s Accuracy | 66.67 | |||||
1992 | Non-Forest | 4 | 4 | 8 | 0.75 | 0.444 |
Forest | 1 | 11 | 12 | |||
Total | 5 | 15 | 15 | |||
Producer’s Accuracy | 80.00 | |||||
1998 | Non-Forest | 4 | 4 | 8 | 0.75 | 0.444 |
Forest | 1 | 11 | 12 | |||
Total | 5 | 15 | 15 | |||
Producer’s Accuracy | 80.00 | |||||
2001 | Non-Forest | 3 | 5 | 8 | 0.70 | 0.400 |
Forest | 1 | 11 | 12 | |||
Total | 4 | 16 | 14 | |||
Producer’s Accuracy | 75.00 | |||||
2003 | Non-Forest | 6 | 2 | 8 | 0.75 | 0.490 |
Forest | 3 | 9 | 12 | |||
Total | 9 | 11 | 15 | |||
Producer’s Accuracy | 66.67 | |||||
2008 | Non-Forest | 5 | 3 | 8 | 0.80 | 0.500 |
Forest | 1 | 11 | 12 | |||
Total | 6 | 14 | 16 | |||
Producer’s Accuracy | 83.33 | |||||
2013 | Non-Forest | 6 | 2 | 8 | 0.90 | 0.706 |
Forest | 0 | 12 | 12 | |||
Total | 6 | 14 | 18 | |||
Producer’s Accuracy | 100.00 | |||||
2015 | Non-Forest | 3 | 5 | 8 | 0.65 | 0.314 |
Forest | 2 | 10 | 12 | |||
Total | 5 | 15 | 13 | |||
Producer’s Accuracy | 60.00 | |||||
2017 | Non-Forest | 4 | 4 | 8 | 0.80 | 0.545 |
Forest | 0 | 12 | 12 | |||
Total | 4 | 16 | 16 |
Scenario | Event Period | Total Volume (106 m3) Simulated | Total Volume (106 m3) Observed | Difference V Observed–Simulated (%) | Q Max (m3/s) Simulated | Q Max (m3/s) Observed | Difference Q Observed (S1)–Simulated (%) | Difference Q Compared to S1 |
---|---|---|---|---|---|---|---|---|
S1 | 4 September 1992–10 September 1992 | 4.873 | 5.623 | 13.35% | 14.245 | 18.6 | ||
S2 | 4.758 | 5.623 | 15.39% | 13.851 | 18.6 | 25.53% | −2.84% | |
S3 | 5.112 | 5.623 | 9.10% | 15.070 | 18.6 | 18.97% | 8.09% | |
S1 | 4 July 1998–10 July 1998 | 12.16 | 11.544 | −5.35% | 40.710 | 31.7 | ||
S2 | 11.672 | 11.544 | −1.11% | 39.018 | 31.7 | −23.09% | −4.34% | |
S3 | 12.411 | 11.544 | −7.51% | 41.567 | 31.7 | −31.13% | 6.13% | |
S1 | 17 June 2001–23 June 2001 | 4.182 | 4.637 | 9.81% | 14.334 | 14.8 | ||
S2 | 4.083 | 4.637 | 11.94% | 13.958 | 14.8 | 5.69% | −2.70% | |
S3 | 4.388 | 4.637 | 5.36% | 15.119 | 14.8 | −2.16% | 7.68% | |
S1 | 21 July 2008–29 July 2008 | 13.598 | 16.271 | 16.43% | 44.685 | 57.6 | - | |
S2 | 13.324 | 16.271 | 18.11% | 43.923 | 57.6 | 23.74% | −1.74% | |
S3 | 14.157 | 16.271 | 12.99% | 46.205 | 57.6 | 19.78% | 3.29% | |
S1 | 10 September 2013–15 September 2013 | 1.227 | 1.176 | −4.30% | 5.194 | 3.78 | ||
S2 | 1.210 | 1.176 | −2.88% | 5.079 | 3.78 | −34.39% | −2.25% | |
S3 | 1.262 | 1.176 | −7.32% | 5.437 | 3.78 | −43.84% | 6.57% | |
S1 | 24 June 2015–27 June 2015 | 1.173 | 1.272 | 7.76% | 7.507 | 6.24 | ||
S2 | 1.121 | 1.272 | 11.91% | 7.131 | 6.24 | −14.28% | −5.28% | |
S3 | 1.201 | 1.272 | 5.55% | 7.706 | 6.24 | −23.51% | 7.47% | |
S1 | 24 July 2017–27 July 2017 | 0.647 | 1.256 | 48.49% | 4.490 | 5.659 | ||
S2 | 0.630 | 1.256 | 49.83% | 4.295 | 5.659 | 24.10% | −4.53% | |
S3 | 0.656 | 1.256 | 47.77% | 4.594 | 5.659 | 18.82% | 6.51% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sidău, M.R.; Horváth, C.; Cheveresan, M.; Șandric, I.; Stoica, F. Assessing Hydrological Impact of Forested Area Change: A Remote Sensing Case Study. Atmosphere 2021, 12, 817. https://doi.org/10.3390/atmos12070817
Sidău MR, Horváth C, Cheveresan M, Șandric I, Stoica F. Assessing Hydrological Impact of Forested Area Change: A Remote Sensing Case Study. Atmosphere. 2021; 12(7):817. https://doi.org/10.3390/atmos12070817
Chicago/Turabian StyleSidău, Mugurel Raul, Csaba Horváth, Maria Cheveresan, Ionuț Șandric, and Florin Stoica. 2021. "Assessing Hydrological Impact of Forested Area Change: A Remote Sensing Case Study" Atmosphere 12, no. 7: 817. https://doi.org/10.3390/atmos12070817
APA StyleSidău, M. R., Horváth, C., Cheveresan, M., Șandric, I., & Stoica, F. (2021). Assessing Hydrological Impact of Forested Area Change: A Remote Sensing Case Study. Atmosphere, 12(7), 817. https://doi.org/10.3390/atmos12070817