Seasonality and Dynamics of Atmospheric Teleconnection from the Tropical Indian Ocean and the Western Pacific to West Antarctica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Used
2.2. Model and Experimental Design
2.3. Teleconnectivity
2.4. Stationary Total Wavenumber
3. Results
3.1. Basic Flow and Teleconnectivity in Different Seasons
3.2. Simulated Circulation in the LBM
3.3. Stationary Total Wavenumber
4. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paolo, F.S.; Fricker, H.A.; Padman, L. Volume loss from Antarctic ice shelves is accelerating. Science 2015, 348, 327–331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rignot, E.; Mouginot, J.; Scheuchl, B.; Broeke, M.V.D.; van Wessem, M.J.; Morlighem, M. Four decades of Antarctic Ice Sheet mass balance from 1979–2017. Proc. Natl. Acad. Sci. USA 2019, 116, 1095–1103. [Google Scholar] [CrossRef] [Green Version]
- Adusumilli, S.; Fricker, H.A.; Medley, B.; Padman, L.; Siegfried, M.R. Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves. Nat. Geosci. 2020, 13, 616–620. [Google Scholar] [CrossRef]
- Wåhlin, A.K.; Kalén, O.; Arneborg, L.; Björk, G.; Carvajal, G.K.; Ha, H.K. Variability of warm deep water inflow in a submarine trough on the Amundsen Sea shelf. J. Phys. Oceanogr. 2013, 43, 2054–2070. [Google Scholar] [CrossRef]
- Dutrieux, P.; De Rydt, J.; Jenkins, A.; Holland, P.R.; Ha, H.K.; Lee, S.H. Strong sensitivity of Pine Island ice-shelf melting to climatic variability. Science 2014, 343, 174–178. [Google Scholar] [CrossRef] [Green Version]
- Nakayama, Y.; Menemenlis, D.; Zhang, H.; Schodlok, M.; Rignot, E. Origin of Circumpolar Deep Water intruding onto the Amundsen and Bellingshausen Sea continental shelves. Nat. Commun. 2018, 9, 3403. [Google Scholar] [CrossRef] [PubMed]
- Hirasawa, N.; Nakamura, H.; Yamanouchi, T. Abrupt changes in meteorological conditions observed at an inland Antarctic Station in association with wintertime blocking. Geophys. Res. Lett. 2000, 27, 1911–1914. [Google Scholar] [CrossRef]
- Massom, R.A.; Pook, M.J.; Comiso, J.C.; Adams, N.; Turner, J.; Lachlan-Cope, T.; Gibson, T.T. Precipitation over the Interior East Antarctic Ice Sheet Related to Midlatitude Blocking-High Activity. J. Clim. 2004, 17, 1914–1928. [Google Scholar] [CrossRef] [Green Version]
- Schlosser, E.; Haumann, F.A.; Raphael, M.N. Atmospheric influences on the anomalous 2016 Antarctic sea ice decay. Cryosphere 2018, 12, 1103–1119. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, W.R.; Massom, R.; Stammerjohn, S.; Reid, P.; Williams, G.; Meier, W. A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Glob. Planet. Chang. 2016, 143, 228–250. [Google Scholar] [CrossRef] [Green Version]
- Cerrone, D.; Fusco, G.; Simmonds, I.; Aulicino, G.; Budillon, G. Dominant Covarying Climate Signals in the Southern Ocean and Antarctic Sea Ice Influence during the Last Three Decades. J. Clim. 2017, 30, 3055–3072. [Google Scholar] [CrossRef] [Green Version]
- Scott, R.C.; Nicolas, J.P.; Bromwich, D.H.; Norris, J.R.; Lubin, D. Meteorological Drivers and Large-Scale Climate Forcing of West Antarctic Surface Melt. J. Clim. 2019, 32, 665–684. [Google Scholar] [CrossRef]
- Bodart, J.A.; Bingham, R.J. The impact of the extreme 2015–2016 El Niño on the mass balance of the Antarctic ice sheet. Geophys. Res. Lett. 2019, 46, 13862–13871. [Google Scholar] [CrossRef]
- Kim, B.-H.; Seo, K.-W.; Eom, J.; Chen, J.; Wilson, C.R. Antarctic ice mass variations from 1979 to 2017 driven by anomalous precipitation accumulation. Sci. Rep. 2020, 10, 20366. [Google Scholar] [CrossRef] [PubMed]
- Simpkins, G.R.; McGregor, S.; Taschetto, A.S.; Ciasto, L.M.; England, M.H. Tropical Connections to Climatic Change in the Extratropical Southern Hemisphere: The Role of Atlantic SST Trends. J. Clim. 2014, 27, 4923–4936. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Gerber, E.P.; Holland, D.M.; Yoo, C. A Rossby Wave Bridge from the Tropical Atlantic to West Antarctica. J. Clim. 2015, 28, 2256–2273. [Google Scholar] [CrossRef]
- Karoly, D.J. Southern hemisphere circulation features associated with El Niño-Southern Oscillation events. J. Clim. 1989, 2, 1239–1252. [Google Scholar] [CrossRef]
- Gong, T.; Feldstein, S.B.; Luo, D. The Impact of ENSO on Wave Breaking and Southern Annular Mode Events. J. Atmos. Sci. 2010, 67, 2854–2870. [Google Scholar] [CrossRef] [Green Version]
- Yiu, Y.Y.S.; Maycock, A.C. On the Seasonality of the El Niño Teleconnection to the Amundsen Sea Region. J. Clim. 2019, 32, 4829–4845. [Google Scholar]
- Meehl, G.A.; Arblaster, J.M.; Bitz, C.M.; Chung, C.T.Y.; Teng, H. Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability. Nat. Geosci. 2016, 9, 590–595. [Google Scholar] [CrossRef]
- Nicolas, J.P.; Vogelmann, A.M.; Scott, R.C.; Wilson, A.B.; Cadeddu, M.P.; Bromwich, D.H. January 2016 extensive summer melt in West Antarctica favoured by strong El Niño. Nat. Commun. 2017, 8, 15799. [Google Scholar] [CrossRef] [PubMed]
- Holland, P.R.; Bracegirdle, T.J.; Dutrieux, P.; Jenkins, A.; Steig, E.J. West Antarctic ice loss influenced by internal climate variability and anthropogenic forcing. Nat. Geosci. 2019, 12, 718–724. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Holland, D.M.; Gerber, E.P.; Yoo, C. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature 2014, 505, 538–542. [Google Scholar] [CrossRef]
- Purich, A.; England, M.H. Tropical Teleconnections to Antarctic Sea Ice During Austral Spring 2016 in Coupled Pacemaker Experiments. Geophys. Res. Lett. 2019, 46, 6848–6858. [Google Scholar] [CrossRef]
- Wang, G.; Hendon, H.H.; Arblaster, J.; Lim, E.-P.; Abhik, S.; Van Rensch, P. Compounding tropical and stratospheric forcing of the record low Antarctic sea-ice in 2016. Nat. Commun. 2019, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- McIntosh, P.C.; Hendon, H.H. Understanding Rossby wave trains forced by the Indian Ocean Dipole. Clim. Dyn. 2017, 50, 2783–2798. [Google Scholar] [CrossRef]
- Lee, H.-J.; Seo, K.-H. Impact of the Madden-Julian oscillation on Antarctic sea ice and its dynamical mechanism. Sci. Rep. 2019, 9, 10761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuncio, M.; Yuan, X. The Influence of the Indian Ocean Dipole on Antarctic Sea Ice. J. Clim. 2015, 28, 2682–2690. [Google Scholar] [CrossRef]
- Sardeshmukh, P.D.; Hoskins, B.J. The Generation of Global Rotational Flow by Steady Idealized Tropical Divergence. J. Atmos. Sci. 1988, 45, 1228–1251. [Google Scholar] [CrossRef] [Green Version]
- Jin, F.; Hoskins, B.J. The Direct Response to Tropical Heating in a Baroclinic Atmosphere. J. Atmos. Sci. 1995, 52, 307–319. [Google Scholar] [CrossRef] [Green Version]
- Tyrrell, G.C.; Karoly, D.J.; McBride, J.L. Links between Tropical Convection and Variations of the Extratropical Circulation during TOGA COARE. J. Atmos. Sci. 1996, 53, 2735–2748. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.C.; Wiin-Nielsen, A.C. On the kinetic energy of the divergent and nondivergent flow in the atmosphere. Tellus 1976, 28, 486–498. [Google Scholar] [CrossRef]
- Seo, K.-H.; Lee, H.-J. Mechanisms for a PNA-Like Teleconnection Pattern in Response to the MJO. J. Atmos. Sci. 2017, 74, 1767–1781. [Google Scholar] [CrossRef]
- Hoskins, B.J.; Karoly, D.J. The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci. 1981, 38, 1179–1196. [Google Scholar] [CrossRef] [Green Version]
- Hoskins, B.J.; Ambrizzi, T. Rossby Wave Propagation on a Realistic Longitudinally Varying Flow. J. Atmos. Sci. 1993, 50, 1661–1671. [Google Scholar] [CrossRef] [Green Version]
- Ambrizzi, T.; Hoskins, B.J.; Hsu, H.H. Rossby wave propagation and teleconnection patterns in the austral winter. J. Atmos. Sci. 1995, 52, 3661–3672. [Google Scholar] [CrossRef] [Green Version]
- Branstator, G. Long-Lived Response of the Midlatitude Circulation and Storm Tracks to Pulses of Tropical Heating. J. Clim. 2014, 27, 8809–8826. [Google Scholar] [CrossRef]
- Wallace, J.M.; Gutzler, D.S. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Weather Rev. 1981, 109, 784–812. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Jin, F.F.; Zhao, S. Interhemispheric propagation of stationary Rossby waves in a horizontally nonuniform back-ground flow. J. Atmos. Sci. 2015, 72, 3233–3256. [Google Scholar] [CrossRef]
- Zhao, S.; Li, J.; Li, Y. Dynamics of an Interhemispheric Teleconnection across the Critical Latitude through a Southerly Duct during Boreal Winter. J. Clim. 2015, 28, 7437–7456. [Google Scholar] [CrossRef]
- Webster, P.J.; Holton, J.R. Cross-Equatorial Response to Middle-Latitude Forcing in a Zonally Varying Basic State. J. Atmos. Sci. 1982, 39, 722–733. [Google Scholar] [CrossRef]
- Zhao, S.; Li, J.; Li, Y.; Jin, F.F.; Zheng, J. Interhemispheric influence of Indo-Pacific convection oscillation on Southern Hemisphere rainfall through southward propagation of Rossby waves. Clim. Dyn. 2019, 52, 3203–3221. [Google Scholar] [CrossRef]
- Hosking, S.; Orr, A.; Marshall, G.J.; Turner, J.; Phillips, T. The Influence of the Amundsen–Bellingshausen Seas Low on the Climate of West Antarctica and Its Representation in Coupled Climate Model Simulations. J. Clim. 2013, 26, 6633–6648. [Google Scholar] [CrossRef] [Green Version]
- Goyal, R.; Jucker, M.; Gupta, A.S.; England, M.H. Generation of the Amundsen Sea Low by Antarctic Orography. Geophys. Res. Lett. 2021, 48, 091487. [Google Scholar] [CrossRef]
- Fogt, R.L.; Wovrosh, A.J.; Langen, R.A.; Simmonds, I. The characteristic variability and connection to the underlying synoptic activity of the Amundsen-Bellingshausen Seas Low. J. Geophys. Res. Space Phys. 2012, 117, 7. [Google Scholar] [CrossRef] [Green Version]
- Turner, J.; Phillips, T.; Hosking, J.S.; Marshall, G.J.; Orr, A. The amundsen sea low. Int. J. Climatol. 2013, 33, 1818–1829. [Google Scholar] [CrossRef] [Green Version]
- Weller, E.; Min, S.-K.; Cai, W.; Zwiers, F.W.; Kim, Y.-H.; Lee, D. Human-caused Indo-Pacific warm pool expansion. Sci. Adv. 2016, 2, e1501719. [Google Scholar] [CrossRef] [Green Version]
- Roxy, M.K.; Dasgupta, P.; McPhaden, M.J.; Suematsu, T.; Zhang, C.; Kim, D. Twofold expansion of the Indo-Pacific warm pool warps the MJO life cycle. Nature 2019, 575, 647–651. [Google Scholar] [CrossRef]
- Hu, S.; Fedorov, A.V. Indian Ocean warming can strengthen the Atlantic meridional overturning circulation. Nat. Clim. Chang. 2019, 9, 747–751. [Google Scholar] [CrossRef]
- Zhang, L.; Han, W.; Karnauskas, K.B.; Meehl, G.A.; Hu, A.; Rosenbloom, N.; Shinoda, T. Indian Ocean Warming Trend Reduces Pacific Warming Response to Anthropogenic Greenhouse Gases: An Interbasin Thermostat Mechanism. Geophys. Res. Lett. 2019, 46, 10882–10890. [Google Scholar] [CrossRef]
- Rivière, G. A Dynamical Interpretation of the Poleward Shift of the Jet Streams in Global Warming Scenarios. J. Atmos. Sci. 2011, 68, 1253–1272. [Google Scholar] [CrossRef]
- Wood, T.; McKenna, C.M.; Chrysanthou, A.; Maycock, A.C. Role of sea surface temperature patterns for the Southern Hemisphere jet stream response to CO2 forcing. Environ. Res. Lett. 2020, 16, 014020. [Google Scholar] [CrossRef]
- Yang, D.; Arblaster, J.M.; Meehl, G.A.; England, M.H.; Lim, E.-P.; Bates, S.; Rosenbloom, N. Role of Tropical Variability in Driving Decadal Shifts in the Southern Hemisphere Summertime Eddy-Driven Jet. J. Clim. 2020, 33, 5445–5463. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.-J.; Jin, E.-K. Seasonality and Dynamics of Atmospheric Teleconnection from the Tropical Indian Ocean and the Western Pacific to West Antarctica. Atmosphere 2021, 12, 849. https://doi.org/10.3390/atmos12070849
Lee H-J, Jin E-K. Seasonality and Dynamics of Atmospheric Teleconnection from the Tropical Indian Ocean and the Western Pacific to West Antarctica. Atmosphere. 2021; 12(7):849. https://doi.org/10.3390/atmos12070849
Chicago/Turabian StyleLee, Hyun-Ju, and Emilia-Kyung Jin. 2021. "Seasonality and Dynamics of Atmospheric Teleconnection from the Tropical Indian Ocean and the Western Pacific to West Antarctica" Atmosphere 12, no. 7: 849. https://doi.org/10.3390/atmos12070849
APA StyleLee, H. -J., & Jin, E. -K. (2021). Seasonality and Dynamics of Atmospheric Teleconnection from the Tropical Indian Ocean and the Western Pacific to West Antarctica. Atmosphere, 12(7), 849. https://doi.org/10.3390/atmos12070849