Characterization of Ambient Particulate Matters in an Industry-Intensive Area in Central Taiwan
Abstract
:1. Introduction
2. Experiment and Methods
2.1. Sampling of PM
2.2. Analysis of Water-Soluble Ions and Metallic Elements
2.3. Analysis of PCDD/Fs
2.4. Principal Component Analysis
3. Results and Discussion
3.1. Particulate Matter Mass Concentrations and Particle Size distribution
3.2. Water-Soluble Ions
3.3. Metallic Elements
3.4. PCDD/F Concentration in Ambient Air
3.5. Source Identification by Principal Component Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Health Risk of Particulate Matter from Long-Rang Transboundary Air Pollution, Joint WHO/Convention Task Force on the Health Aspects of Air Pollution; World Health Organization Regional Office for Europe: Copenhagen, Denmark, 2006. [Google Scholar]
- Hinds, W.C. Aerosol Technology, Introduction, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1999. [Google Scholar]
- Tecer, L.H.; Alagha, O.; Karaca, F.; Tuncel, G.; Eldes, N. Particulate matter (PM2.5, PM10-2.5, and PM10) and children’s hospital admissions for asthma and respiratory diseases: A bidirectional case-crossover study. J. Toxicol. Environ. Health Part A 2008, 71, 512–520. [Google Scholar] [CrossRef]
- Hughes, L.S.; Cass, G.R.; Gone, J.; Ames, M.; Olmez, I. Physical and chemical characterization of atmospheric ultrafine particles in the Los Angeles area. Environ. Sci. Technol. 1998, 32, 1153–1161. [Google Scholar] [CrossRef]
- Harrison, R.M.; Shi, J.P.; Xi, S.; Khan, A.; Mark, D.; Kinnersley, R.; Yin, J. Measurement of number, mass and size distribution of particles in the atmosphere. Philosophical Transactions of the Royal Society of London. Ser. A Math. Phys. Eng. Sci. 2000, 358, 2567–2580. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Exposure and Human Health Reassessment of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) and Related Compounds National Academy Sciences Review Draft; United States Environmental Protection Agency: Washington, DC, USA, 2000. [Google Scholar]
- Lai, C.-H.; Lin, C.-H.; Liao, C.-C. Respiratory deposition and health risk of inhalation of particle-bound heavy metals in the carbon black feeding area of a tire manufacturer. Air Qual. Atmos. Health 2017, 10, 1281–1289. [Google Scholar] [CrossRef]
- Han, Y.-J.; Kim, T.-S.; Kim, H. Ionic constituents and source analysis of PM2. 5 in three Korean cities. Atmos. Environ. 2008, 42, 4735–4746. [Google Scholar] [CrossRef]
- Tsai, J.-H.; Lin, J.-H.; Yao, Y.-C.; Chiang, H.-L. Size distribution and water soluble ions of ambient particulate matter on episode and non-episode days in Southern Taiwan. Aerosol Air Qual. Res. 2011, 12, 263–274. [Google Scholar] [CrossRef] [Green Version]
- Masri, S.; Kang, C.-M.; Koutrakis, P. Composition and sources of fine and coarse particles collected during 2002–2010 in Boston, MA. J. Air Waste Manag. Assoc. 2015, 65, 287–297. [Google Scholar] [CrossRef] [Green Version]
- Vega, E.; Ruiz, H.; Escalona, S.; Cervantes, A.; Lopez–Veneroni, D.; Gonzalez–Avalos, E.; Sanchez–Reyna, G. Chemical composition of fine particles in Mexico City during 2003–2004. Atmos. Pollut. Res. 2011, 2, 477–483. [Google Scholar] [CrossRef]
- Lohmann, R.; Jones, K.C. Dioxins and furans in air and deposition: A review of levels, behaviour and processes. Sci. Total Environ. 1998, 219, 53–81. [Google Scholar] [CrossRef]
- Hippelein, M.; Kaupp, H.; Dörr, G.; McLachlan, M. Testing of a sampling system and analytical method for determination of semivolatile organic compounds in ambient air. Chemosphere 1993, 26, 2255–2263. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Determination of Polychlorinated, Polybrominated and Brominated/Chlorinated Dibenzo-p-Dioxins and Dibenzofurans in Ambient Air, Compendium Method TO-9A; United States Environmental Protection Agency: Washington, DC, USA, 1999. [Google Scholar]
- Hopke, P.K. Review of receptor modeling methods for source apportionment. J. Air Waste Manag. Assoc. 2016, 66, 237–259. [Google Scholar] [CrossRef]
- Hopke, P.K. Receptor Modeling in Environmental Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 1985. [Google Scholar]
- Marcazzan, G.; Ceriani, M.; Valli, G.; Vecchi, R. Source apportionment of PM10 and PM2. 5 in Milan (Italy) using receptor modelling. Sci. Total Environ. 2003, 317, 137–147. [Google Scholar] [CrossRef]
- Saradhi, I.; Prathibha, P.; Hopke, P.K.; Pandit, G.; Puranik, V.J.A.; Research, A.Q. Source apportionment of coarse and fine particulate matter at Navi Mumbai, India. Aerosol Air Qual. Res. 2008, 8, 423–436. [Google Scholar]
- Lü, S.; Zhang, R.; Yao, Z.; Yi, F.; Ren, J.; Wu, M.; Feng, M.; Wang, Q. Size distribution of chemical elements and their source apportionment in ambient coarse, fine, and ultrafine particles in Shanghai urban summer atmosphere. J. Environ. Sci. 2012, 24, 882–890. [Google Scholar] [CrossRef]
- Ntziachristos, L.; Ning, Z.; Geller, M.D.; Sheesley, R.J.; Schauer, J.J.; Sioutas, C. Fine, ultrafine and nanoparticle trace element compositions near a major freeway with a high heavy-duty diesel fraction. Atmos. Environ. 2007, 41, 5684–5696. [Google Scholar] [CrossRef]
- Fang, G.-C.; Chang, C.-N.; Wu, Y.-S.; Fu, P.P.-C.; Yang, C.-J.; Chen, C.-D.; Chang, S.-C. Ambient suspended particulate matters and related chemical species study in central Taiwan, Taichung during 1998–2001. Atmos. Environ. 2002, 36, 1921–1928. [Google Scholar] [CrossRef]
- Tsai, H.-H.; Yuan, C.-S.; Hung, C.-H.; Lin, Y.-C. Comparing physicochemical properties of ambient particulate matter of hot spots in a highly polluted air quality zone. Aerosol Air Qual. Res. 2010, 10, 331–344. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Nag, S.; Mukhopadhyay, U. Characterisation of PM 10, PM 2.5 and benzene soluble organic fraction of particulate matter in an urban area of Kolkata, India. Environ. Monit. Assess. 2006, 115, 205–222. [Google Scholar] [CrossRef]
- Huang, B.; Liu, M.; Ren, Z.; Bi, X.; Zhang, G.; Sheng, G.; Fu, J. Chemical composition, diurnal variation and sources of PM2. 5 at two industrial sites of South China. Atmos. Pollut. Res. 2013, 4, 298–305. [Google Scholar] [CrossRef] [Green Version]
- Turnbull, A.B.; Harrison, R.M. Major component contributions to PM10 composition in the UK atmosphere. Atmos. Environ. 2000, 34, 3129–3137. [Google Scholar] [CrossRef]
- Huang, R.-J.; Zhang, Y.; Bozzetti, C.; Ho, K.-F.; Cao, J.-J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 2014, 514, 218–222. [Google Scholar] [CrossRef] [Green Version]
- Bourotte, C.; Curi-Amarante, A.-P.; Forti, M.-C.; Pereira, L.A.; Braga, A.L.; Lotufo, P.A. Association between ionic composition of fine and coarse aerosol soluble fraction and peak expiratory flow of asthmatic patients in São Paulo city (Brazil). Atmos. Environ. 2007, 41, 2036–2048. [Google Scholar] [CrossRef]
- Cheng, H.; Gong, W.; Wang, Z.; Zhang, F.; Wang, X.; Lv, X.; Liu, J.; Fu, X.; Zhang, G. Ionic composition of submicron particles (PM1.0) during the long-lasting haze period in January 2013 in Wuhan, central China. J. Environ. Sci. 2014, 26, 810–817. [Google Scholar] [CrossRef]
- Shen, Z.; Cao, J.; Arimoto, R.; Han, Z.; Zhang, R.; Han, Y.; Liu, S.; Okuda, T.; Nakao, S.; Tanaka, S. Ionic composition of TSP and PM2.5 during dust storms and air pollution episodes at Xi’an, China. Atmos. Environ. 2009, 43, 2911–2918. [Google Scholar] [CrossRef]
- Deshmukh, D.K.; Deb, M.K.; Tsai, Y.I.; Mkoma, S.L.; Research, A.Q. Water soluble ions in PM2. 5 and PM1 aerosols in Durg city, Chhattisgarh, India. Aerosol Air Qual. Res. 2011, 11, 696–708. [Google Scholar] [CrossRef]
- Dongarrà, G.; Manno, E.; Varrica, D.; Lombardo, M.; Vultaggio, M. Study on ambient concentrations of PM10, PM10–2.5, PM2. 5 and gaseous pollutants. Trace elements and chemical speciation of atmospheric particulates. Atmos. Environ. 2010, 44, 5244–5257. [Google Scholar] [CrossRef]
- Yan, J.; Lai, C.-H.; Lung, S.-C.C.; Chen, C.; Wang, W.-C.; Huang, P.-I.; Lin, C.-H. Industrial PM2. 5 cause pulmonary adverse effect through RhoA/ROCK pathway. Sci. Total Environ. 2017, 599, 1658–1666. [Google Scholar] [CrossRef]
- Wåhlin, P.; Berkowicz, R.; Palmgren, F. Characterisation of traffic-generated particulate matter in Copenhagen. Atmos. Environ. 2006, 40, 2151–2159. [Google Scholar] [CrossRef]
- López, J.; Callén, M.; Murillo, R.; Garcia, T.; Navarro, M.; De la Cruz, M.; Mastral, A. Levels of selected metals in ambient air PM10 in an urban site of Zaragoza (Spain). Environ. Res. 2005, 99, 58–67. [Google Scholar] [CrossRef]
- Rahn, K.A. A graphical technique for determining major components in a mixed aerosol. I. Descriptive aspects. Atmos. Environ. 1999, 33, 1441–1455. [Google Scholar] [CrossRef]
- Zhi, M.; Zhang, X.; Zhang, K.; Ussher, S.J.; Lv, W.; Li, J.; Gao, J.; Luo, Y.; Meng, F. The characteristics of atmospheric particles and metal elements during winter in Beijing: Size distribution, source analysis, and environmental risk assessment. Ecotoxicol. Environ. Saf. 2021, 211, 111937. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. National Emissions Inventory of Sources and Emissions of Silver; Office of Air and Water Programs; United States Environmental Protection Agency: Washington, DC, USA, 1973. [Google Scholar]
- Taner, S.; Pekey, B.; Pekey, H. Fine particulate matter in the indoor air of barbeque restaurants: Elemental compositions, sources and health risks. Sci. Total Environ. 2013, 454, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Mohiuddin, K.; Strezov, V.; Nelson, P.; Stelcer, E. Characterisation of trace metals in atmospheric particles in the vicinity of iron and steelmaking industries in Australia. Atmos. Environ. 2014, 83, 72–79. [Google Scholar] [CrossRef]
- Agarwal, A.; Mangal, A.; Satsangi, A.; Lakhani, A.; Kumari, K.M. Characterization, sources and health risk analysis of PM2.5 bound metals during foggy and non-foggy days in sub-urban atmosphere of Agra. Atmos. Res. 2017, 197, 121–131. [Google Scholar] [CrossRef]
- Tripathee, L.; Kang, S.; Huang, J.; Sharma, C.M.; Sillanpää, M.; Guo, J.; Paudyal, R. Concentrations of trace elements in wet deposition over the central Himalayas, Nepal. Atmos. Environ. 2014, 95, 231–238. [Google Scholar] [CrossRef]
- Tunno, B.J.; Dalton, R.; Michanowicz, D.R.; Shmool, J.L.; Kinnee, E.; Tripathy, S.; Cambal, L.; Clougherty, J.E. Spatial patterning in PM 2.5 constituents under an inversion-focused sampling design across an urban area of complex terrain. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 385–396. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.-W.; Chen, W.-Y.; Chang, C.-N.; Chuang, Y.-H.; Lin, Y.-H. Identifying airborne metal particles sources near an optoelectronic and semiconductor industrial park. Atmos. Res. 2016, 174, 97–105. [Google Scholar] [CrossRef]
- Chen, W.-Y.; Chen, H.-W.; Chang, C.-N.; Lin, Y.-H.; Chuang, Y.-H.; Lin, Y.-C.; Research, A.Q. Particles and metallic elements near a high-tech industrial park: Analysis of size distributions. Aerosol Air Qual. Res. 2015, 15, 1787–1798. [Google Scholar] [CrossRef] [Green Version]
- Ngo, T.H.; Yang, Y.-H.; Chen, Y.-C.; Pan, W.C.; Chi, K.H. Continuous nationwide atmospheric PCDD/F monitoring network in Taiwan (2006–2016): Variation in concentrations and apportionment of emission sources. Chemosphere 2020, 255, 126979. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, L.-T.; Wang, Y.-F.; Kuo, G.-H.; Wang, L.-C.; Chang-Chien, G.-P. Cluster analysis for polychlorinated dibenzo-p-dioxins and dibenzofurans concentrations in southern Taiwan. J. Air Waste Manag. Assoc. 2009, 59, 1474–1480. [Google Scholar] [CrossRef]
- Wang, J.B.; Chang-Chien, G.-P.; Lin, W.-Y.; Yeh, J.-H.; Hung, C.-H. A seasonality study of polychlorinated dibenzo-p-dioxins and dibenzofurans in ambient air in Kaohsiung (Taiwan) clustered with metallurgical industries. J. Hazard. Mater. 2009, 162, 103–110. [Google Scholar] [CrossRef]
- Zain, S.M.S.M.; Latif, M.T.; Baharudin, N.H.; Anual, Z.F.; Hanif, N.M.; Khan, M.F. Atmospheric PCDDs/PCDFs levels and occurrences in Southeast Asia: A review. Sci. Total Environ. 2021, 783, 146929. [Google Scholar] [CrossRef] [PubMed]
- Li, H.-W.; Wu, Y.-L.; Lee, W.-J.; Chang-Chien, G.-P. Fate of polychlorinated dibenzo-p-dioxins and dibenzofurans in a fly ash treatment plant. J. Air Waste Manag. Assoc. 2007, 57, 1024–1031. [Google Scholar] [CrossRef] [Green Version]
- Quinn, P.; Miller, T.; Bates, T.; Ogren, J.; Andrews, E.; Shaw, G. A 3-year record of simultaneously measured aerosol chemical and optical properties at Barrow, Alaska. J. Geophys. Res. Atmos. 2002, 107, AAC 8-1–AAC 8-15. [Google Scholar] [CrossRef]
- Kleeman, M.J.; Schauer, J.J.; Cass, G.R. Size and composition distribution of fine particulate matter emitted from motor vehicles. Environ. Sci. Technol. 2000, 34, 1132–1142. [Google Scholar] [CrossRef]
- Watson, J.G.; Chow, J.C.; Lurmann, F.W.; Musarra, S.P. Ammonium nitrate, nitric acid, and ammonia equilibrium in wintertime Phoenix, Arizona. Air Waste 1994, 44, 405–412. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
Sampling Time | Coarse Particles (μg/m3) | Fine Particles (μg/m3) | Ultrafine Particles (μg/m3) | |||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |
Spring | 16.96 | 3.9 | 14.82 | 5.7 | 3.94 | 0.9 |
Summer | 12.67 | 3.3 | 9.14 | 1.7 | 5.96 | 3.7 |
Autumn | 14.99 | 1.8 | 15.39 | 3.0 | 2.61 | 0.5 |
Winter | 9.78 | 5.8 | 18.17 | 10.0 | 1.27 | 0.1 |
Water-Soluble Ions | Coarse Particles (μg/m3) | Fine Particles (μg/m3) | Ultrafine Particles (μg/m3) | |||
---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | |
Na+ | 0.90 | ±0.52 | 0.43 | ±0.39 | 0.23 | ±0.28 |
NH4+ | 0.30 | ±0.10 | 1.24 | ±1.01 | 0.16 | ±0.05 |
K+ | 0.35 | ±0.16 | 0.32 | ±0.11 | 0.16 | ±0.21 |
Ca2+ | 0.47 | ±0.18 | 0.25 | ±0.17 | 0.09 | ±0.08 |
Mg2+ | 0.20 | ±0.17 | 0.11 | ±0.10 | 0.04 | ±0.05 |
F− | 0.35 | ±0.28 | 0.35 | ±0.25 | 0.13 | ±0.13 |
Cl− | 1.63 | ±0.41 | 1.37 | ±0.29 | 0.41 | ±0.25 |
NO3− | 1.62 | ±0.61 | 1.30 | ±1.02 | 0.26 | ±0.09 |
SO42− | 1.18 | ±0.29 | 2.32 | ±1.03 | 0.44 | ±0.20 |
PCDD/F | Spring, 2017 | Summer, 2017 |
---|---|---|
2,3,7,8-TeCDD | ND | ND |
1,2,3,7,8-PeCDD | ND | ND |
1,2,3,4,7,8-HxCDD | ND | ND |
1,2,3,6,7,8-HxCDD | ND | ND |
1,2,3,7,8,9-HxCDD | ND | ND |
1,2,3,4,6,7,8-HpCDD | 0.0377 | 0.0177 |
OCDD | 0.1042 | 0.0488 |
2,3,7,8-TeCDF | ND | ND |
1,2,3,7,8-PeCDF | ND | ND |
2,3,4,7,8-PeCDF | ND | ND |
1,2,3,4,7,8-HxCDF | ND | ND |
1,2,3,6,7,8-HxCDF | ND | ND |
1,2,3,7,8,9-HxCDF | 0.0068 | ND |
2,3,4,6,7,8-HxCDF | 0.0013 | ND |
1,2,3,4,6,7,8-HpCDF | 0.0341 | 0.0288 |
1,2,3,4,7,8,9-HpCDF | ND | ND |
OCDF | 0.0699 | 0.0434 |
PCDDs | 0.1122 | 0.0722 |
PCDFs | 0.1418 | 0.0665 |
PCDDs/PCDFs ratio | 1.26 | 0.92 |
Total PCDD/DFs | 0.2541 | 0.1387 |
PCDDs I-TEQ a | 0.0005 | 0.0002 |
PCDFs I-TEQ a | 0.0012 | 0.0003 |
PCDDs/PCDFs(TEQ) ratio | 0.39 | 0.68 |
I-TEQ a | 0.0017 | 0.0006 |
Water-Soluble Ions | Factor 1 | Factors 2 |
---|---|---|
Na+ | 0.831 | 0.324 |
NH4+ | −0.711 | 0.657 |
K+ | −0.449 | 0.138 |
Ca2+ | 0.184 | −0.365 |
Mg2+ | 0.781 | 0.064 |
F− | 0.821 | −0.110 |
Cl− | 0.870 | 0.109 |
NO3− | 0.163 | 0.950 |
SO42− | 0.487 | 0.719 |
% of Variance | 46.942 | 32.921 |
Cumulative % | 46.942 | 79.864 |
Possible sources | Sea salt Industrial process | Secondary pollutants |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.-W.; Chen, K.-S.; Lai, C.-H.; Chen, T.-Y.; Lin, Y.-C.; Lin, Y.-C.; Chen, C.-H.; Peng, Y.-P.; Lin, M.-H. Characterization of Ambient Particulate Matters in an Industry-Intensive Area in Central Taiwan. Atmosphere 2021, 12, 926. https://doi.org/10.3390/atmos12070926
Li H-W, Chen K-S, Lai C-H, Chen T-Y, Lin Y-C, Lin Y-C, Chen C-H, Peng Y-P, Lin M-H. Characterization of Ambient Particulate Matters in an Industry-Intensive Area in Central Taiwan. Atmosphere. 2021; 12(7):926. https://doi.org/10.3390/atmos12070926
Chicago/Turabian StyleLi, Hsing-Wang, Kang-Shin Chen, Chia-Hsiang Lai, Ting-Yu Chen, Yi-Ching Lin, Yung-Chang Lin, Chia-Hung Chen, Yen-Ping Peng, and Ming-Hsun Lin. 2021. "Characterization of Ambient Particulate Matters in an Industry-Intensive Area in Central Taiwan" Atmosphere 12, no. 7: 926. https://doi.org/10.3390/atmos12070926
APA StyleLi, H. -W., Chen, K. -S., Lai, C. -H., Chen, T. -Y., Lin, Y. -C., Lin, Y. -C., Chen, C. -H., Peng, Y. -P., & Lin, M. -H. (2021). Characterization of Ambient Particulate Matters in an Industry-Intensive Area in Central Taiwan. Atmosphere, 12(7), 926. https://doi.org/10.3390/atmos12070926