Future Projections and Uncertainty Assessment of Precipitation Extremes in Iran from the CMIP6 Ensemble
Abstract
:1. Introduction
Data and Climatology
2. Methods
2.1. Generalized Extreme Value Distribution
2.2. Bias Correction
2.3. Performance and Independence Weighting for Ensembles
3. Results
3.1. Model Similarity
3.2. PI-Weights
3.3. Future Projection of Extreme Precipitation
3.4. Return Levels
3.5. Changes in Return Levels
3.6. Change in Return Periods
3.7. Exceedance Probability and Waiting Time
3.8. Expected Number of Reoccurring Years
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. Special Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2012; Available online: http://ipcc-wg2.gov/SREX/report/ (accessed on 15 July 2020).
- Easterling, D.R.; Kunkel, K.E.; Arnold, J.R.; Knutson, T.; LeGrande, A.N.; Leung, L.R.; Vose, R.S.; Waliser, D.E.; Wehner, M.F. Precipitation Change in the United States. In Climate Science Special Report: Fourth National Climate Assessment; Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, T.K., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2017; Volume I, pp. 207–230. [Google Scholar] [CrossRef]
- Westra, S.; Alexander, L.V.; Zwiers, F.W. Global increasing trends in annual maximum daily precipitation. J. Clim. 2013, 26, 3904–3918. [Google Scholar] [CrossRef] [Green Version]
- Freychet, N.; Hsu, H.; Chou, C.; Wu, C. Asian summer monsoon in CMIP5 projections: A link between the change in extreme precipitation and monsoon dynamics. J. Clim. 2015. [Google Scholar] [CrossRef]
- Alexander, L.V. Global observed long-term changes in temperature and precipitation extremes: A review of progress and limitations in IPCC assessments and beyond. Weather. Clim. Extrem. 2016, 11, 4–16. [Google Scholar] [CrossRef] [Green Version]
- Park, C.; Min, S.K.; Lee, D.; Cha, D.H.; Suh, M.S.; Kang, H.K.; Hong, S.Y.; Lee, D.K.; Baek, H.J.; Boo, K.O.; et al. Evaluation of multiple regional climate models for summer climate extremes over East Asia. Clim. Dynam. 2016, 46, 2469–2486. [Google Scholar] [CrossRef]
- Dike, V.N.; Lin, Z.-H.; Ibe, C.C. Intensification of Summer Rainfall Extremes over Nigeria during Recent Decades. Atmosphere 2020, 11, 1084. [Google Scholar] [CrossRef]
- Ruckstuhl, C.; Philipona, R.; Morl, J.; Ohmura, A. Observed relationship between surface specific humidity, integrated water vapor, and longwave downward radiation at different altitudes. J. Geophys. Res. Atmos. 2007, 112, 1–7. [Google Scholar] [CrossRef]
- Lenderink, G.; van Meijgaard, E. Increase in hourly precipitation extremes beyond expectations from temperature changes. Nat. Geosci. 2008, 1, 511–514. [Google Scholar] [CrossRef]
- Berg, P.; Moseley, C.; Haerter, J.O. Strong increase in convective precipitation in response to higher temperatures. Nat. Geosci. 2013, 6, 181–185. [Google Scholar] [CrossRef]
- Scott, M.; Prepare for More Downpours: Heavy Rain Has Increased across Most of the United States, and Is Likely to Increase Further. ClimateWatch Magazine. 2019. Available online: https://www.climate.gov/news-features/featured-images/prepare-more-downpours-heavy-rain-has-increased-across-most-united-0 (accessed on 25 July 2020).
- Mann, M.E.; Kump, L.R. Dire Predictions: Understanding Climate Change, 2nd ed.; DK Publishing: New York, NY, USA, 2015. [Google Scholar]
- Hosking, J.R.M.; Wallis, J.R. Regional Frequency Analysis: An Approach Based on L-Moments; Cambridge University Press: Cambridge, UK, 1997; 244p. [Google Scholar]
- El Adlouni, S.; Ouarda, T.B.; Zhang, X.; Roy, R.; Bobée, B. Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resour. Res. 2007, 43, W03410. [Google Scholar] [CrossRef]
- Park, J.-S.; Kang, H.-S.; Lee, Y.; Kim, M.-K. Changes in the extreme daily rainfall in South Korea. Intern. J. Climatol. 2011, 31, 2290–2299. [Google Scholar] [CrossRef]
- Kharin, V.V.; Zwiers, F.W.; Zhang, X.; Wehner, M. Changes in temperature and precipitation extremes in the CMIP5 ensemble. Clim. Chang. 2013, 119, 345–357. [Google Scholar] [CrossRef]
- Zhu, J.; Forsee, W.; Schumer, R.; Gautam, M. Future projections and uncertainty assessment of extreme rainfall intensity in the United States from an ensemble of climate models. Clim. Chang. 2013, 118, 469–485. [Google Scholar] [CrossRef]
- Gentilucci, M.; Barbieri, M.; Lee, H.S.; Zardi, D. Analysis of rainfall trends and extreme precipitation in the Middle Adriatic Side, Marche Region (Central Italy). Water 2019, 11, 1948. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.; Shin, Y.G.; Park, J.S.; Boo, K.O. Future projections and uncertainty assessment of precipitation extremes in the Korean peninsula from the CMIP5 ensemble. Atmos. Sci. Lett. 2020, e954. [Google Scholar] [CrossRef] [Green Version]
- Coles, S. An Introduction to Statistical Modelling of Extreme Values; Springer: New York, NY, USA, 2001; p. 224. [Google Scholar]
- Modarres, R.; Sarhadi, A. Rainfall trends analysis of Iran in the last half of the twentieth century. J. Geophys. Res. Atmos. 2009, 114, D3. [Google Scholar] [CrossRef]
- Rahimi, M.; Fatemi, S.S. Mean versus Extreme Precipitation Trends in Iran over the Period 1960–2017. Pure Appl. Geophys. 2019, 176, 3717–3735. [Google Scholar] [CrossRef]
- Shokouhi, M.; Nejad, S.H.S.; Aval, M.B. Evaluation of simulated precipitation and temperature from CMIP5 climate models in regional climate change studies (case study: Major rainfed wheat–production areas in Iran). J. Water Soil 2018, 32, Pe1013–Pe1027. [Google Scholar]
- Darand, M. Projected changes in extreme precipitation events over Iran in the 21st century based on CMIP5 models. Clim. Res. 2020, 82, 75–95. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Faramarzi, M.; Ghasemi, S.S.; Yang, H. Assessing the impact of climate change on water resources in Iran. Water Resour. Res. 2009, 45, W10434. [Google Scholar] [CrossRef] [Green Version]
- Darand, M.; Sohrabi, M.M. Identifying drought and flood–prone areas based on significant changes in daily precipitation over Iran. Nat. Hazards 2018, 90, 1427–1446. [Google Scholar] [CrossRef]
- Maghsood, F.F.; Moradi, H.; Bavani, M.; Reza, A.; Panahi, M.; Berndtsson, R.; Hashemi, H. Climate Change Impact on Flood Frequency and Source Area in Northern Iran under CMIP5 Scenarios. Water 2019, 11, 273. [Google Scholar] [CrossRef] [Green Version]
- Rahimi, J.; Laux, P.; Khalili, A. Assessment of climate change over Iran: CMIP5 results and their presentation in terms of Koppen–Geiger climate zones. Theor. Appl. Climatol. 2020, 141, 1–17. [Google Scholar] [CrossRef]
- Zarrin, A.; Dadashi-Roudbari, A. Projection of future extreme precipitation in Iran based on CMIP6 multi-model ensemble. Theor. Appl. Climatol. 2021, 144, 643–660. [Google Scholar] [CrossRef]
- O’Neill, B.C.; Kriegler, E.; Riahi, K.; Ebi, K.L.; Hallegatte, S.; Carter, T.R.; Mathur, R.; van Vuuren, D.P. A new scenario framework for climate change research: The concept of Shared Socioeconomic Pathways. Clim. Chang. 2014, 122, 387–400. [Google Scholar] [CrossRef] [Green Version]
- Tebaldi, C.; Hayhoe, K.; Arblaster, J.M.; Meehl, G.A. Going to the extremes: An intercomparison of model-simulated historical and future changes in extreme events. Clim. Chang. 2006, 79, 185–211. [Google Scholar] [CrossRef]
- Knutti, R. The end of model democracy? Clim. Chang. 2010, 102, 394–404. [Google Scholar] [CrossRef]
- Suh, M.S.; Oh, S.G.; Lee, D.K.; Cha, D.H.; Choi, S.-J.; Jin, C.-S.; Hong, S.-Y. Development of new ensemble methods based on the performance skills of regional climate models over South Korea. J. Clim. 2012, 25, 7067–7082. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Ivanov, V.; Kim, J.; Fatichi, S. On the use of observations in assessment of multi-model climate ensemble. Stoch. Environ. Res. Risk Assess. 2019, 33, 1923–1937. [Google Scholar] [CrossRef]
- Baker, N.C.; Taylor, P.C. A framework for evaluating climate model performance metrics. J. Clim. 2016, 29, 1773–1782. [Google Scholar] [CrossRef]
- Georgi, F.; Mearns, L.O. Calculation of average, uncertainty range and reliability of regional climate changes from AOGCM simulations via the ’Reliability Ensemble Averaging (REA)’ method. J. Clim. 2002, 15, 1141–1158. [Google Scholar] [CrossRef]
- Sanderson, B.M.; Knutti, R.; Caldwell, P. A representative democracy to reduce interderpendency in a multimodel ensemble. J. Clim. 2015, 28, 5171–5194. [Google Scholar] [CrossRef] [Green Version]
- Abramowitz, G.; Gupta, H. Toward a model space and model independence metric. Geophys. Res. Lett. 2008, 35, L05705. [Google Scholar] [CrossRef] [Green Version]
- Knutti, R.; Sedlacek, J.; Sanderson, B.M.; Lorenz, R.; Fischer, E.M.; Eyring, V. A climate model projection weighting scheme accounting for performance and independence. Geophys. Res. Lett. 2017, 44, 1909–1918. [Google Scholar]
- Lorenz, R.; Herger, N.; Sedlacek, J.; Eyring, V.; Fischer, E.M.; Knutti, R. Prospects and caveats of weighting climate models for summer maximum temperature projections over North America. J. Geophys. Res. Atmos. 2018, 123, 4509–4526. [Google Scholar] [CrossRef]
- Shin, Y.; Lee, Y.; Park, J.S. A Weighting Scheme in A Multi-Model Ensemble for Bias-Corrected Climate Simulation. Atmosphere 2020, 11, 775. [Google Scholar] [CrossRef]
- Brunner, L.; Lorenz, R.; Zumwald, M.; Knutti, R. Quantifying uncertainty in European climate projections using combined performance-independence weighting. Environ. Res. Lett. 2019, 14, 124010. [Google Scholar] [CrossRef]
- Shin, Y.; Shin, Y.; Hong, J.; Kim, M.-K.; Byun, Y.-H.; Boo, K.-O.; Chung, I.-U.; Park, D.-S.R.; Park, J.-S. Future Projections and Uncertainty Assessment of Precipitation Extremes in the Korean Peninsula from the CMIP6 Ensemble with a Statistical Framework. Atmosphere 2021, 12, 97. [Google Scholar] [CrossRef]
- Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Tank, A.K.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Modarres, R.; Sarhadi, A.; Burn, D.H. Changes of extreme drought and flood events in Iran. Glob. Planet. Chang. 2016, 144, 67–81. [Google Scholar] [CrossRef]
- Rahimi, M.; Mohammadian, N.; Vanashi, A.R.; Whan, K. Trends in indices of extreme temperature and precipitation in Iran over the period 1960–2014. Open J. Ecol. 2018, 8, 396. [Google Scholar] [CrossRef] [Green Version]
- Alijani, B.; O’brien, J.; Yarnal, B. Spatial analysis of precipitation intensity and concentration in Iran. Theor. Appl. Climatol. 2008, 94, 107–124. [Google Scholar] [CrossRef]
- Karl, T.R.; Nicholls, N.; Ghazi, A. CLIVAR/GCOS/WMO workshop on indices and indicators for climate extremes: Workshop summary. Weather. Clim. Extrem. 1999, 42, 3–7. [Google Scholar]
- Peterson, T.C.; Foll, C.; Gruza, G.; Hogg, W.; Mokssit, A.; Plummer, N. Report on the Activities of the Working Group on Climate Change Detection and Related Rapporteurs 1998–2001; Rep. WCDMP-47, WMO-TD 1071; WMO: Geneve, Switzerland, 2001; 143p, Available online: https://www.clivar.org/sites/default/files/documents/048_wgccd.pdf (accessed on 15 November 2020).
- Ávila, Á.; Guerrero, F.C.; Escobar, Y.C.; Justino, F. Recent Precipitation Trends and Floods in the Colombian Andes. Water 2019, 11, 379. [Google Scholar] [CrossRef] [Green Version]
- Koch, S.E.; DesJardins, M.; Kocin, P.J. An interactive Barnes objective map analysis scheme for use with satellite and conventional data. J. Clim. Appl. Meteorol. 1983, 22, 1487–1503. [Google Scholar] [CrossRef]
- Hadley, W.; Winston, C.; Lionel, H.; Thomas, L.P.; Kohske, T.; Claus, W.; Kara, W.; Hiroaki, Y.; Dewey, D. ggplot2. R Package, Version 3.3.5. 2021. Available online: https://CRAN.R-project.org/package=ggplot2 (accessed on 3 July 2021).
- Serinaldi, F. Dismissing return periods! Stoch. Environ. Res. Risk Assess. 2015, 29, 1179–1189. [Google Scholar] [CrossRef] [Green Version]
- Paciorek, C.J.; Stone, D.A.; Wehner, M.F. Quantifying statistical uncertainty in the attribution of human influence on severe weather. Weather. Clim. Extrem. 2018, 20, 69–80. [Google Scholar] [CrossRef]
- Wilks, D. Statistical Methods in the Atmospheric Sciences, 3rd ed.; Academic Press: New York, NY, USA, 2011. [Google Scholar]
- Hosking, J.R.M. L-Moments. R Package, Version 2.8. 2019. Available online: https://CRAN.R-project.org/package=lmom (accessed on 5 March 2020).
- Cannon, A.J. Multivariate quantile mapping bias correction: An N-dimensional probability density function transform for climate model simulations of multiple variables. Clim. Dyn. 2018, 50, 31–49. [Google Scholar] [CrossRef] [Green Version]
- Maraun, D.; Widmann, M. Statistical Downscaling and Bias Correction for Climate Research; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Massoud, E.C.; Espinoza, V.; Guan, B.; Waliser, D.E. Global Climate Model Ensemble Approaches for Future Projections of Atmospheric Rivers. Earth’s Future 2019, 7, 1136–1151. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Cox, P.M.; Flato, G.M.; Gleckler, P.J.; Abramowitz, G.; Caldwell, P.; William, D.C.; Bettina, K.G.; Alex, D.H.; Forrest, M.H.; et al. Taking climate model evaluation to the next level. Nat. Clim. Chang. 2019, 9, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Sanderson, B.M.; Knutti, R.; Caldwell, P. Addressing interdependency in a multimodel ensemble by interpolation of model properties. J. Clim. 2015, 28, 5150–5170. [Google Scholar] [CrossRef]
- Brunner, L.; Pendergrass, A.G.; Lehner, F.; Merrifield, A.L.; Lorenz, R.; Knutti, R. Reduced global warming from CMIP6 projections when weighting models by performance and independence. Earth Syst. Dyn. Discuss. 2020, 11, 995–1012. [Google Scholar] [CrossRef]
Variable Acronym | Description |
---|---|
AMP1 | Annual Maximum Daily Precipitation |
AMP5 | Annual Maximum Five-Day Precipitation |
ATP | Annual Total Precipitation |
AMCWD | Annual Maximum Consecutive Wet Days |
AMCDD | Annual Maximum Consecutive Dry Days |
SSP2-4.5 | SSP3-7.0 | SSP5-8.5 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
P1 | P2 | P2 | P1 | P2 | P3 | P1 | P2 | P3 | ||
Mean | 14.5 | 13.9 | 12.9 | 14.7 | 12.6 | 10.3 | 13.8 | 11.2 | 9.4 | |
20- | Q1 | 12.3 | 11.0 | 10.3 | 12.3 | 10.7 | 8.5 | 11.7 | 8.9 | 7.6 |
year | Median | 14.2 | 13.1 | 12.3 | 14.4 | 12.6 | 9.7 | 13.1 | 10.8 | 9.4 |
Q3 | 16.2 | 15.1 | 14.2 | 16.3 | 14.2 | 11.7 | 15.6 | 12.9 | 10.9 | |
Mean | 33.8 | 30.8 | 28.8 | 32.8 | 28.2 | 22.9 | 32.1 | 25.6 | 20.8 | |
50- | Q1 | 26.9 | 24.6 | 22.3 | 25.5 | 23.0 | 18.2 | 25.6 | 19.2 | 15.8 |
year | Median | 33.8 | 29.2 | 26.9 | 33.8 | 29.0 | 22.4 | 31.3 | 24.5 | 19.3 |
Q3 | 38.9 | 35.6 | 33.1 | 39.4 | 33.6 | 27.3 | 37.8 | 31.6 | 25.2 |
SSP2-4.5 | SSP3-7.0 | SSP5-8.5 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
AMP1 | OBS | P1 | P2 | P3 | P1 | P2 | P3 | P1 | P2 | P3 |
20 mm | 1.4 | 1.3 | 1.2 | 1.3 | 1.3 | 1.3 | 1.2 | 1.2 | 1.2 | 1.2 |
30 mm | 3.0 | 2.7 | 2.4 | 2.5 | 2.8 | 2.6 | 2.1 | 2.2 | 2.3 | 2.1 |
40 mm | 8.8 | 6.2 | 5.4 | 6.2 | 6.6 | 5.8 | 4.7 | 6.3 | 5.0 | 4.1 |
50 mm | 28.1 | 14.2 | 12.8 | 15.5 | 13.3 | 13.6 | 10.2 | 13.0 | 10.8 | 7.9 |
60 mm | 83.5 | 35.2 | 36.3 | 42.3 | 39.6 | 31.9 | 26.2 | 33.1 | 23.8 | 19.9 |
80 mm | 690 | 216 | 178 | 170 | 207 | 232 | 127 | 120 | 83.7 | 74.6 |
100 mm | 2556 | 619 | 405 | 498 | 541 | 663 | 310 | 415 | 208 | 204 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, J.; Javan, K.; Shin, Y.; Park, J.-S. Future Projections and Uncertainty Assessment of Precipitation Extremes in Iran from the CMIP6 Ensemble. Atmosphere 2021, 12, 1052. https://doi.org/10.3390/atmos12081052
Hong J, Javan K, Shin Y, Park J-S. Future Projections and Uncertainty Assessment of Precipitation Extremes in Iran from the CMIP6 Ensemble. Atmosphere. 2021; 12(8):1052. https://doi.org/10.3390/atmos12081052
Chicago/Turabian StyleHong, Juyoung, Khadijeh Javan, Yonggwan Shin, and Jeong-Soo Park. 2021. "Future Projections and Uncertainty Assessment of Precipitation Extremes in Iran from the CMIP6 Ensemble" Atmosphere 12, no. 8: 1052. https://doi.org/10.3390/atmos12081052
APA StyleHong, J., Javan, K., Shin, Y., & Park, J. -S. (2021). Future Projections and Uncertainty Assessment of Precipitation Extremes in Iran from the CMIP6 Ensemble. Atmosphere, 12(8), 1052. https://doi.org/10.3390/atmos12081052