Low-Cost Air Quality Stations’ Capability to Integrate Reference Stations in Particulate Matter Dynamics Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. The AirQino Monitoring Unit
2.3. Air Pollution Zones and Station Deployment
- i.
- ii.
- The current regulations for air pollution. According to the fixed air quality measurement classification stated by the 2008/50/EC EU Directive [6], a total of nine monitoring station types can generally be identified as a combination of: (i) site characteristics (urban, suburban, rural); and (ii) prevailing emission category (road traffic, industrial activities, background).
- The S15 station was located in the southern–central part of the municipality, an area where the main emission contributions are likely derived from industrial activities (43°49′2460″ N, 10°33′4580″ E). S15 was therefore classified as an IND station and conveniently renamed S15-IND. Its observation period was 28 June 2018–15 April 2020.
- The S16 station was located in the southern part of the municipality, a rural area not significantly affected by nearby emission sources (43°49′2460″ N, 10°33′4580″ E). S16 was therefore classified as an RB station and renamed S16-RB. Its observation period was 28 June 2018–15 April 2020.
- The S19 station was co-located by the Regional Agency for Environmental Protection of Tuscany (ARPAT) reference station, deployed in the central part of the municipality (43°50′2340″ N, 10°34′2241″ E). Similar to the ARPAT reference station, S19 was classified as a UB station and renamed S19-UB. Its observation period was 19 January 2018–15 April 2020.
2.4. Calibration and Validation
2.5. Data Processing and Statistical Analysis
3. Results
3.1. Stations Field Calibration and Field Validation
3.2. Annual and Seasonal Concentrations
3.3. Wintertime PM10 Concentrations
3.4. PM10 Concentration High-Frequency Analysis and Population Critical Exposure
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pope, C.A., III; Ezzati, M.; Dockery, D.W. Fine particulate air pollution and life expectancy in the United States. N. Engl. J. Med. 2009, 360, 376–386. [Google Scholar] [CrossRef] [Green Version]
- Kheirbek, I.; Wheeler, K.; Walters, S.; Kass, D.; Matte, T. PM2.5 and ozone health impacts and disparities in New York City: Sensitivity to spatial and temporal resolution. Air Qual. Atmos. Health 2013, 6, 473–486. [Google Scholar] [CrossRef] [Green Version]
- Velasco, A.; Ferrero, R.; Gandino, F.; Montrucchio, B.; Rebaudengo, M. A mobile and low-cost system for environmental monitoring: A case study. Sensors 2016, 16, 710. [Google Scholar] [CrossRef]
- Liu, S.; Hua, S.; Wang, K.; Qiu, P.; Liu, H.; Wu, B.; Shao, P.; Liu, X.; Wu, Y.; Xue, Y.; et al. Spatial-temporal variation characteristics of air pollution in Henan of China: Localized emission inventory, WRF/Chem simulations and potential source contribution analysis. Sci. Total Environ. 2018, 624, 396–406. [Google Scholar] [CrossRef] [PubMed]
- EEA, European Environmental Agency. Exceedance of Air Quality Standards in Europe. 2021. Available online: https://www.eea.europa.eu/data-and-maps/indicators/exceedance-of-air-quality-limit-2/assessment (accessed on 24 February 2021).
- EC, European Commision. Directive 2008/50/EC on Ambient Air Quality and Cleaner Air for Europe. 2008. Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32008L0050 (accessed on 21 May 2008).
- Viana, M.; Reche, C.; Amato, F.; Alastuey, A.; Querol, X.; Moreno, T.; Lucarelli, F.; Nava, S.; Calzolai, G.; Chiari, M.; et al. Evidence of biomass burning aerosols in the Barcelona urban environment during wintertime. Atmos. Environ. 2013, 72, 8188. [Google Scholar] [CrossRef]
- Perez, P.; Gramsch, E. Forecasting hourly PM2.5 in Santiago de Chile with emphasis on night episodes. Atmos. Environ. 2016, 124, 2227. [Google Scholar] [CrossRef]
- Gama, C.; Monteiro, A.; Pio, C.; Miranda, A.I.; Baldasano, J.M.; Tchepel, O. Temporal patterns and trends of particulate matter over Portugal: A long-term analysis of background concentrations. Air Qual. Atmos. Health 2018, 11, 397–407. [Google Scholar] [CrossRef] [Green Version]
- Gualtieri, G.; Carotenuto, F.; Finardi, S.; Tartaglia, M.; Toscano, P.; Gioli, B. Forecasting PM10 hourly concentrations in northern Italy: Insights on models performance and PM10 drivers through self-organizing maps. Atmos. Pollut. Res. 2018, 9, 1204–1213. [Google Scholar] [CrossRef]
- Kingsy Grace, R.; Manju, S.A. Comprehensive Review of Wireless Sensor Networks Based Air Pollution Monitoring Systems. Wirel. Pers. Commun. 2019, 108, 2499–2515. [Google Scholar] [CrossRef]
- Kumar, P.; Morawska, L.; Martani, C.; Biskos, G.; Neophytou, M.; Di Sabatino, S.; Bell, M.; Norford, L.; Britter, R. The rise of low-cost sensing for managing air pollution in cities. Environ. Int. 2015, 75, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.Y.; Kobernus, M. Citizen science and its role in sustainable development: Status, trends, issues, and opportunities. In Analyzing the Role of Citizen Science in Modern Research. (Advances in Knowledge Acquisition, Transfer, and Management); Ceccaroni, L., Piera, J., Eds.; IGI Global: Hershey, PA, USA, 2017; Chapter 7; pp. 147–167. [Google Scholar] [CrossRef]
- Zaldei, A.; Camilli, F.; De Filippis, T.; Di Gennaro, F.; Di Lonardo, S.; Dini, F.; Gioli, B.; Gualtieri, G.; Matese, A.; Nunziati, W.; et al. An integrated low-cost road traffic and air pollution monitoring platform for next citizen observatories. Transp. Res. Procedia 2017, 24, 531538. [Google Scholar] [CrossRef]
- Vagnoli, C.; Martelli, F.; De Filippis, T.; Di Lonardo, S.; Gioli, B.; Gualtieri, G.; Matese, A.; Rocchi, L.; Toscano, P.; Zaldei, A. The SensorWebBike for air quality monitoring in a smart city. In Proceedings of the IET Conference on Future Intelligent Cities, London, UK, 4–6 December 2014; Issue 15564. ISBN 978-1-84919-981-0. [Google Scholar] [CrossRef]
- Zaldei, A.; Vagnoli, C.; Di Lonardo, S.; Gioli, B.; Gualtieri, G.; Toscano, P.; Martelli, F.; Matese, A. AirQino, a low-cost air quality mobile platform. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 12–17 April 2015. [Google Scholar] [CrossRef]
- ARPAT, Tuscany Region Environmental Protection Agency. Annual Report on Air Quality Status in the Tuscany Region. 2019. Available online: http://www.arpat.toscana.it/documentazione/catalogo-pubblicazioni-arpat/relazione-annuale-sullo-stato-della-qualita-dellaria-nella-regione-toscana-anno-2019 (accessed on 17 March 2021). (In Italian)
- TR, Tuscany Region. PATOS (Particolato Atmosferico in TOScana) Regional Project. September 2011. Available online: https://www.regione.toscana.it/-/progetto-regionale-patos (accessed on 17 March 2021). (In Italian).
- Nava, S.; Lucarelli, F.; Amato, F.; Becagli, S.; Calzolai, G.; Chiari, M.; Giannoni, M.; Traversi, R.; Udisti, R. Biomass burning contributions estimated by synergistic coupling of daily and hourly aerosol composition records. Sci. Total Environ. 2015, 511, 11–20. [Google Scholar] [CrossRef] [PubMed]
- ARPAT, Tuscany Region Environmental Protection Agency. Emission Sources in the Valley of Lucca. April 2015. Available online: http://www.arpat.toscana.it/documentazione/catalogo-pubblicazioni-arpat/le-sorgenti-di-emissione-della-piana-lucchese (accessed on 17 March 2021). (In Italian).
- Busillo, C.; Calastrini, F.; Gualtieri, G. Determinazione di una Metodologia per la Caratterizzazione Meteoclimatica di Un Sito: Applicazioni nell’area di Pisa, Prato e Lucca. 20 April 2004. Available online: http://www.lamma.rete.toscana.it/pubblicazioni/determinazione-di-una-metodologia-la-caratterizzazione-meteo (accessed on 17 March 2021). (In Italian).
- Cavaliere, A.; Carotenuto, F.; Di Gennaro, F.; Gioli, B.; Gualtieri, G.; Martelli, F.; Matese, A.; Toscano, P.; Zaldei, A. Development of Low-Cost Air Quality Stations for Next Generation Monitoring Networks: Calibration and Validation of PM2.5 and PM10 Sensors. Sensors 2018, 18, 2843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EEA, European Environmental Agency. Corine Land Cover (CLC) 2018, Version 2020. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 24 February 2021). (In Italian)
- ARPAT, Tuscany Region Environmental Protection Agency. Annual report on air quality in the Tuscany region—year 2018. Technical Report. April 2017. Available online: http://www.arpat.toscana.it/documentazione/catalogo-pubblicazioni-arpat/relazione-annuale-sullo-stato-della-qualita-dell-aria-nella-regione-toscana-anno-2018 (accessed on 26 July 2021). (In Italian).
- Deary, M.E.; Griffiths, S.D. A novel approach to the development of 1-hourthreshold concentrations for exposure to particulatematter during episodic air pollution events. J. Hazard. Mater. 2021, 418, 126334. [Google Scholar] [CrossRef]
- Carotenuto, F.; Brilli, L.; Gioli, B.; Gualtieri, G.; Vagnoli, C.; Mazzola, M.; Viola, A.P.; Vitale, V.; Severi, M.; Traversi, R.; et al. Long-Term Performance Assessment of Low-Cost Atmospheric Sensors in the Arctic Environment. Sensors 2020, 20, 1919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zikova, N.; Masiol, M.; Chalupa, D.C.; Rich, D.Q.; Ferro, A.R.; Hopke, P.K. Estimating hourly concentrations of PM2.5 across a metropolitan area using low-cost particle monitors. Sensors 2017, 17, 1922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; Gong, S.; Liu, H.; An, X.; Yu, Y.; Zhao, S.; Wu, L.; Song, C.; Zhou, C.; Wang, J.; et al. Influences of meteorological conditions on interannual variations of particulate matter pollution during winter in the Beijing–Tianjin–Hebei area. J. Meteorol. Res. 2017, 31, 1062–1069. [Google Scholar] [CrossRef]
- He, J.; Gong, S.; Yu, Y.; Yu, L.; Wu, L.; Mao, H.; Song, C.; Zhao, S.; Liu, H.; Li, X.; et al. Air pollution characteristics and their relation to meteorological conditions during 2014–2015 in major Chinese cities. Environ. Pollut. 2017, 223, 484–496. [Google Scholar] [CrossRef]
- Pozzer, A.; Bacer, S.; De Zolt Sappadina, S.; Predicatori, F.; Caleffi, A. Long-term concentrations of fine particulate matter and impact on human health in Verona, Italy. Atmos. Pollut. Res. 2019, 10, 731738. [Google Scholar] [CrossRef]
- Lu, X.; Chen, Y.; Huang, Y.; Chen, D.; Shen, J.; Lin, C.; Li, Z.; Fung, J.C.H.; Lau, A.K.H. Exposure and mortality apportionment of PM2.5 between 2006 and 2015 over the Pearl River Delta region in southern China. Atmos. Environ. 2020, 231, 117512. [Google Scholar] [CrossRef]
- Andreini, B.P.; Dalle Mura, D.; Fruzzetti, R.; Collaveri, C. ARPAT. 2018. Available online: http://www.arpat.toscana.it/documentazione/catalogo-pubblicazioni-arpat/approfondimenti-aria/campagna-di-monitoraggio-del-particolato-e-del-biossido-di-azoto-nel-comune-di-porcari-lu-anni-2016-2017 (accessed on 20 March 2021).
- Rajšić, S.F.; Tasić, M.D.; Novaković, V.T.; Tomašević, M.N. First assessment of the PM10 and PM2.5 particulate level in the ambient air of Belgrade city. Environ. Sci. Pollut. Res. 2004, 11, 158164. [Google Scholar] [CrossRef]
- Perrino, C.; Catrambone, M.; Pietrodangelo, A. Influence of atmospheric stability on the mass concentration and chemical composition of atmospheric particles: A case study in Rome, Italy. Environ. Int. 2008, 34, 621628. [Google Scholar] [CrossRef] [PubMed]
- Holst, J.; Mayer, H.; Holst, T. Effect of meteorological exchange conditions on PM10 concentration. Meteorol. Z. 2008, 17, 273282. [Google Scholar] [CrossRef] [Green Version]
- Gualtieri, G.; Toscano, P.; Crisci, A.; Di Lonardo, S.; Tartaglia, M.; Vagnoli, C.; Zaldei, A.; Gioli, B. Influence of road traffic, residential heating and meteorological conditions on PM10 concentrations during air pollution critical episodes. Environ. Sci. Pollut. Res. 2015, 22, 1902719038. [Google Scholar] [CrossRef]
- Amodio, M.; Andriani, E.; De Gennaro, G.; Demarinis Loiotile, A.; Di Gilio, A.; Placentino, M.C. An integrated approach to identify the origin of PM10 exceedances. Environ. Sci. Pollut. Res. 2012, 19, 31323141. Available online: https://biblioproxy.cnr.it:2481/10.1007/s11356-012-0804-5 (accessed on 21 March 2021). [CrossRef] [PubMed]
- Sofia, D.; Giuliano, A.; Gioiella, F.; Barletta, D.; Poletto, M. Modeling of an air quality monitoring network with high space-time resolution. In Proceedings of the 28th European Symposium on Computer Aided Process Engineering, Graz, Austria, 10–13 June 2018. [Google Scholar] [CrossRef]
- Santiago, J.-L.; Buccolieri, R.; Rivas, E.; Sanchez, B.; Martilli, A.; Gatto, E.; Martín, F. On the Impact of Trees on Ventilationina Real Street in Pamplona, Spain. Atmosphere 2019, 10, 697. [Google Scholar] [CrossRef] [Green Version]
- Nowak, D.J.; Greenfield, E.J.; Hoehn, R.E.; Lapoint, E. Carbon storage and sequestration by trees in urban and community areas of the United States. Environ. Pollut. 2013, 178, 229–236. [Google Scholar] [CrossRef] [Green Version]
Station ID | Type | Analysis | Start of Activity | End of Activity | Number of Days |
---|---|---|---|---|---|
S15-IND | Industrial | Full dataset | 28 June 2018 | 15 April 2020 | 658 |
Field calibration | 22 March2019 | 7 June 2019 | 78 | ||
Field validation | 25 January 2020 | 20 February 2020 | 27 | ||
Population exposure * | 28 June 2018 | 15 April 2020 | 553 | ||
S16-RB | Rural–Background | Full dataset | 28 June 2018 | 15 April 2020 | 658 |
Field calibration | 22 March2019 | 7 June 2019 | 78 | ||
Field validation | 25 January 2020 | 20 February 2020 | 27 | ||
Population exposure * | 28 June 2018 | 15 April 2020 | 553 | ||
S19-UB | Urban–Background | Full dataset | 18 January 2018 | 15 April 2020 | 819 |
Field calibration | 22 March2019 | 7 June 2019 | 78 | ||
Field validation | 25 January 2020 | 20 February 2020 | 27 | ||
Population exposure * | 28 June 2018 | 15 April 2020 | 553 |
Station | Pollutant | AirQino Stations Procedure (Co-Location Period) | |||||
---|---|---|---|---|---|---|---|
Field Calibration | Field Validation | ||||||
(22 March–7 June 2019) | (25 January–20 February 2020) | ||||||
Mean Values (µg m−3) | RMSE (µg m−3) | R2 | Mean Values (µg m−3) | RMSE (µg m−3) | R2 | ||
ARPAT | PM10 | 17.3 ± 7.9 | 35.4 ± 14.1 | ||||
PM2.5 | 10.9 ± 5.8 | 25.1 ± 13.7 | |||||
S15-IND | PM10 | 17.0 ± 7.0 | 4.1 | 0.74 | 35.3 ± 14.3 | 7.5 | 0.75 |
PM2.5 | 10.6 ± 5.5 | 2.3 | 0.85 | 22.2 ± 11.9 | 6.4 | 0.83 | |
S16-RB | PM10 | 15.3 ± 5.4 | 4.0 | 0.65 | 30.8 ± 11.6 | 9.0 | 0.70 |
PM2.5 | 9.1 ± 3.4 | 2.4 | 0.67 | 18.5 ± 9.7 | 9.8 | 0.74 | |
S19-UB | PM10 | 17.4 ± 5.9 | 4.6 | 0.63 | 36.4 ± 15.1 | 11.2 | 0.51 |
PM2.5 | 12.7 ± 4.6 | 4.2 | 0.54 | 22.2 ± 11.9 | 9.6 | 0.56 |
Month | PM10 Concentrations (µg m−3) | PM2.5 Concentrations (µg m−3) | ||||||
---|---|---|---|---|---|---|---|---|
ARPAT | S15-IND | S16-RB | S19-UB | ARPAT | S15-IND | S16-RB | S19-UB | |
January | 76.6 ± 33.3 | 57.6 ± 26 | 27.7 ± 14.3 | 61.4 ± 31.7 | 67.9 ± 30.8 | 40 ± 17.2 | 18.3 ± 9.6 | 40.5 ± 22.2 |
February | 41.3 ± 16 | 32.8 ± 12.6 | 21.6 ± 9.1 | 34.2 ± 14.7 | 32.9 ± 14.2 | 22.8 ± 8.3 | 15.5 ± 9 | 21.9 ± 9.7 |
March | 30.2 ± 14.4 | 22.3 ± 10.3 | 23.4 ± 9.7 | 28.5 ± 13.6 | 20.9 ± 10 | 14.2 ± 8.3 | 13.7 ± 6.8 | 18 ± 11.6 |
April | 25.4 ± 7.7 | 19.3 ± 3.7 | 21.4 ± 4 | 19.7 ± 6.1 | 12.5 ± 2.6 | 14.3 ± 2.7 | ||
May | ||||||||
June | 21.6 ± 6.9 | 14.7 ± 3.2 | 14.6 ± 4.2 | 16.9 ± 3.4 | 12.1 ± 2.2 | 8.5 ± 1.8 | 8.5 ± 2 | 10.3 ± 1.5 |
July | 17.1 ± 3.8 | 13.5 ± 2.1 | 13.2 ± 2.9 | 15.1 ± 2.4 | 10.4 ± 2.5 | 8 ± 1.7 | 8.4 ± 2.1 | 9.9 ± 1.7 |
August | 17.3 ± 4.4 | 13.9 ± 3.6 | 13.4 ± 3.4 | 15.5 ± 2.9 | 10.8 ± 3.4 | 8.5 ± 2.9 | 8.4 ± 2.5 | 10.2 ± 2.1 |
September | 17.2 ± 3.8 | 15 ± 4 | 13 ± 2.9 | 16.1 ± 2.5 | 9.7 ± 3.1 | 9.1 ± 2.9 | 7.7 ± 2.3 | 10.2 ± 1.9 |
October | 22.6 ± 6.8 | 22.8 ± 7 | 18.6 ± 8.4 | 25 ± 9.6 | 13.6 ± 5.4 | 14.4 ± 5.2 | 11.2 ± 5 | 15.4 ± 5.7 |
November | 29.4 ± 14.9 | 22.9 ± 15.6 | 16.8 ± 5.8 | 27.3 ± 21.6 | 22 ± 14 | 14.4 ± 12.6 | 11 ± 5.8 | 15.7 ± 8.6 |
December | 54.1 ± 20.9 | 35.4 ± 14.7 | 20.9 ± 8.1 | 43 ± 18 | 45.6 ± 21.5 | 24.6 ± 11.8 | 14.8 ± 10.4 | 26.9 ± 11.1 |
Year avg. | 32.1 ± 12.1 | 25.1 ± 9.9 | 18.4 ± 6.6 | 27.7 ± 11.3 | 24.1 ± 10.3 | 16.4 ± 7.3 | 11.8 ± 5.3 | 17.6 ± 7.2 |
Station Name | S15-IND | S16-RB | S19-UB |
---|---|---|---|
N° of collected 1-h values | 13224 | 13224 | 13224 |
N° of missing values | 2352 | 755 | 645 |
% of data available | 82.2 | 94.3 | 95.1 |
N° of 1-h values > 90 µg m−3 | 280 | 31 | 504 |
% of values > 90 µg m−3 | 2.6 | 0.2 | 4 |
N° of critical episodes | 56 | 10 | 111 |
January | 38 | 4 | 57 |
February | 4 | 1 | 12 |
March | 0 | 2 | 9 |
April | 0 | 0 | 0 |
May | 0 | 0 | 0 |
June | 0 | 0 | 0 |
July | 0 | 0 | 0 |
August | 0 | 0 | 0 |
September | 0 | 0 | 0 |
October | 0 | 3 | 3 |
November | 4 | 0 | 4 |
December | 10 | 0 | 26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brilli, L.; Carotenuto, F.; Andreini, B.P.; Cavaliere, A.; Esposito, A.; Gioli, B.; Martelli, F.; Stefanelli, M.; Vagnoli, C.; Venturi, S.; et al. Low-Cost Air Quality Stations’ Capability to Integrate Reference Stations in Particulate Matter Dynamics Assessment. Atmosphere 2021, 12, 1065. https://doi.org/10.3390/atmos12081065
Brilli L, Carotenuto F, Andreini BP, Cavaliere A, Esposito A, Gioli B, Martelli F, Stefanelli M, Vagnoli C, Venturi S, et al. Low-Cost Air Quality Stations’ Capability to Integrate Reference Stations in Particulate Matter Dynamics Assessment. Atmosphere. 2021; 12(8):1065. https://doi.org/10.3390/atmos12081065
Chicago/Turabian StyleBrilli, Lorenzo, Federico Carotenuto, Bianca Patrizia Andreini, Alice Cavaliere, Andrea Esposito, Beniamino Gioli, Francesca Martelli, Marco Stefanelli, Carolina Vagnoli, Stefania Venturi, and et al. 2021. "Low-Cost Air Quality Stations’ Capability to Integrate Reference Stations in Particulate Matter Dynamics Assessment" Atmosphere 12, no. 8: 1065. https://doi.org/10.3390/atmos12081065
APA StyleBrilli, L., Carotenuto, F., Andreini, B. P., Cavaliere, A., Esposito, A., Gioli, B., Martelli, F., Stefanelli, M., Vagnoli, C., Venturi, S., Zaldei, A., & Gualtieri, G. (2021). Low-Cost Air Quality Stations’ Capability to Integrate Reference Stations in Particulate Matter Dynamics Assessment. Atmosphere, 12(8), 1065. https://doi.org/10.3390/atmos12081065