Research on Monthly Precipitation Prediction Based on the Least Square Support Vector Machine with Multi-Factor Integration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region and Data Collection
2.2. Research Methods
2.2.1. Ensemble Empirical Mode Decomposition
2.2.2. Extraction of Potential Energy of Gravity Waves
2.2.3. LSSVM Optimized by GA
2.2.4. Establishment of the Prediction Model for Precipitation
- γ and σ are randomly generated.
- The LSSVM model is trained by the normalized training samples and the fitness function is used as the objective function of GA.
- The samples are separately trained and verified. The global optimal solution is searched and the output is through iteration.
- The LSSVM model is constructed by using the searched global optimal solution (γ, σ).
3. Results
3.1. Analysis on Monthly Precipitation Series in Many Years Based on EEMD
3.2. Identification of Significant Meteorological Factors
3.3. Analysis on the Correlation between Topographic Driving Factors and Precipitation
3.4. Analysis on Simulation Results of Precipitation
3.5. Model Verification
4. Discussions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quan, Q.; Hao, Z.; Xifeng, H.; Jingchun, L. Research on water temperature prediction based on improved support vector regression. Neural Comput. Appl. 2020, 1–10. [Google Scholar] [CrossRef]
- Feng, Z.; Niu, W.; Tang, Z.; Jiang, Z.; Xu, Y.; Liu, Y.; Zhang, H. Monthly runoff time series prediction by variational mode decomposition and support vector machine based on quantum-behaved particle swarm optimization. J. Hydrol. 2020, 583, 124627. [Google Scholar] [CrossRef]
- Yoon, H.; Jun, S.-C.; Hyun, Y.; Bae, G.-O.; Lee, K.-K. A comparative study of artificial neural networks and support vector machines for predicting groundwater levels in a coastal aquifer. J. Hydrol. 2011, 396, 128–138. [Google Scholar] [CrossRef]
- Abdulelah Al-Sudani, Z.; Salih, S.Q.; Sharafati, A.; Yaseen, Z.M. Development of multivariate adaptive regression spline integrated with differential evolution model for streamflow simulation. J. Hydrol. 2019, 573, 1–12. [Google Scholar] [CrossRef]
- Kisi, O. Modeling reference evapotranspiration using three different heuristic regression approaches. Agric. Water Manag. 2016, 169, 162–172. [Google Scholar] [CrossRef]
- Mouatadid, S.; Adamowski, J.F.; Tiwari, M.K.; Quilty, J.M. Coupling the maximum overlap discrete wavelet transform and long short-term memory networks for irrigation flow forecasting. Agric. Water Manag. 2019, 219, 72–85. [Google Scholar] [CrossRef]
- Kumar, D.; Pandey, A.; Sharma, N.; Flügel, W.-A. Daily suspended sediment simulation using machine learning approach. CATENA 2016, 138, 77–90. [Google Scholar] [CrossRef]
- Kisi, O.; Sanikhani, H. Prediction of long-term monthly precipitation using several soft computing methods without climatic data. Int. J. Climatol. 2015, 35, 4139–4150. [Google Scholar] [CrossRef]
- Liu, X.; Bo, L.; Luo, H. Bearing faults diagnostics based on hybrid LS-SVM and EMD method. Measurement 2015, 59, 145–166. [Google Scholar] [CrossRef]
- Chisola, M.N.; van der Laan, M.; Bristow, K.L. A landscape hydrology approach to inform sustainable water resource management under a changing environment. A case study for the Kaleya River Catchment, Zambia. J. Hydrol. Reg. Stud. 2020, 32, 100762. [Google Scholar] [CrossRef]
- Safari, M.J.S.; Mohammadi, B.; Kargar, K. Invasive weed optimization-based adaptive neuro-fuzzy inference system hybrid model for sediment transport with a bed deposit. J. Clean. Prod. 2020, 276, 124267. [Google Scholar] [CrossRef]
- Ahmed, K.; Sachindra, D.A.; Shahid, S.; Iqbal, Z.; Nawaz, N.; Khan, N. Multi-model ensemble predictions of precipitation and temperature using machine learning algorithms. Atmos. Res. 2020, 236, 104806. [Google Scholar] [CrossRef]
- Chang, F.-J.; Liang, J.-M.; Chen, Y.-C. Flood forecasting using radial basis function neural networks. Syst. Man Cybern. Part C Appl. Rev. IEEE Trans. 2001, 31, 530–535. [Google Scholar] [CrossRef]
- Yang, T.; Liu, J.; Chen, Q. Assessment of plain river ecosystem function based on improved gray system model and analytic hierarchy process for the Fuyang River, Haihe River Basin, China. Ecol. Modell. 2013, 268, 37–47. [Google Scholar] [CrossRef]
- Zheng, H.; Chen, L.; Han, X.; Zhao, X.; Ma, Y. Classification and regression tree (CART) for analysis of soybean yield variability among fields in Northeast China: The importance of phosphorus application rates under drought conditions. Agric. Ecosyst. Environ. 2009, 132, 98–105. [Google Scholar] [CrossRef]
- de Lavôr Paes Barreto, M.; Netto, A.M.; da Silva, J.P.S.; Amaral, A.; Borges, E.; de França, E.J.; Vale, R.L. Gray water footprint assessment for pesticide mixtures applied to a sugarcane crop in Brazil: A comparison between two models. J. Clean. Prod. 2020, 276, 124254. [Google Scholar] [CrossRef]
- Wang, L.; Xie, Y.; Wang, X.; Xu, J.; Zhang, H.; Yu, J.; Sun, Q.; Zhao, Z. Meteorological sequence prediction based on multivariate space-time auto regression model and fractional calculus grey model. Chaos Solitons Fractals 2019, 128, 203–209. [Google Scholar] [CrossRef]
- Corchado, J.M.; Lees, B. A hybrid case-based model for forecasting. Appl. Artif. Intell. 2001, 15, 105–127. [Google Scholar] [CrossRef]
- Liang, J.; Li, W.; Bradford, S.A.; Šimůnek, J. Physics-Informed Data-Driven Models to Predict Surface Runoff Water Quantity and Quality in Agricultural Fields. Water 2019, 11, 200. [Google Scholar] [CrossRef] [Green Version]
- Qian, K.; Mohamed, A.; Claudel, C. Physics Informed Data Driven Model for Flood Prediction: Application of Deep Learning in Prediction of Urban Flood Development. arXiv 2019, arXiv:1908.10312. Available online: https://arxiv.org/abs/1908.10312 (accessed on 20 August 2021).
- Liu, G.; Wu, R. Spatial and temporal characteristics of summer precipitation events spanning different numbers of days over Asia. J. Climatol. 2016, 36, 2288–2302. [Google Scholar] [CrossRef]
- Sohn, B.J.; Yeh, S.W.; Lee, A.; Lau, W.K.M. Regulation of atmospheric circulation controlling the tropical Pacific precipitation change in response to CO2 increases. Nat. Commun. 2019, 10, 1108. [Google Scholar] [CrossRef] [Green Version]
- Vecchi, G.A.; Soden, B.J.J. Global Warming and the Weakening of the Tropical Circulation. J. Clim. 2007, 20, 4316–4340. [Google Scholar] [CrossRef] [Green Version]
- Aizen, E.M.; Aizen, V.B.; Melack, J.M.; Nakamura, T.; Ohta, T. Precipitation and atmospheric circulation patterns at mid-latitudes of Asia. Int. J. Climatol. 2001, 21, 535–556. [Google Scholar] [CrossRef]
- Prein, A.F.; Gobiet, A.; Truhetz, H.; Keuler, K.; Goergen, K.; Teichmann, C.; Fox Maule, C.; van Meijgaard, E.; Déqué, M.; Nikulin, G.; et al. Precipitation in the EURO-CORDEX 0.11° and 0.44° simulations: High resolution, high benefits? Clim. Dyn. 2016, 46, 383–412. [Google Scholar] [CrossRef] [Green Version]
- Cox, J.; Steenburgh, W.; Kingsmill, D.; Shafer, J.; Colle, B.; Bousquet, O.; Smull, B.; Cai, H. The kinematic structure of a Wasatch Mountain winter storm during IPEX IOP3. Mon. Weather Rev.-MON Weather REV 2005, 133, 521–542. [Google Scholar] [CrossRef]
- Lorente-Plazas, R.; Mitchell, T.; Mauger, G.; Salathé, E. Local Enhancement of Extreme Precipitation during Atmospheric Rivers as Simulated in a Regional Climate Model. J. Hydrometeorol. 2018, 19, 1429–1446. [Google Scholar] [CrossRef]
- James, C.N.; Houze, R.A. Modification of precipitation by coastal orography in storms crossing northern California. Mon. Weather Rev. 2005, 133, 3110–3131. [Google Scholar] [CrossRef]
- Colle, B.A.; Wolfe, J.B.; Steenburgh, W.J.; Kingsmill, D.E.; Cox, J.A.W.; Shafer, J.C. High-resolution simulations and microphysical validation of an orographic precipitation event over the Wasatch Mountains during IPEX IOP3. Mon. Weather Rev. 2005, 133, 2947–2971. [Google Scholar] [CrossRef] [Green Version]
- Neiman, P.; Ralph, F.; White, A.; Kingsmill, D.; Persson, O. The Statistical Relationship between Upslope Flow and Rainfall in California’s Coastal Mountains: Observations during CALJET. Mon. Weather Rev.-MON Weather REV 2002, 130, 1468–1492. [Google Scholar] [CrossRef]
- Lin, Y.-L.; Chiao, S.; Wang, T.-A.; Kaplan, M.; Weglarz, R. Some Common Ingredients for Heavy Orographic Rainfall. Weather Forecast.-Weather Forecast 2001, 16, 633–660. [Google Scholar] [CrossRef]
- Khan, A.; Jin, S. Gravity wave activities in Tibet observed by COSMIC GPS radio occultation. Geod. Geodyn. 2018, 9, 504–511. [Google Scholar] [CrossRef]
- Bárdossy, A.; Das, T. Influence of rainfall observation network on model calibration and application. Hydrol. Earth Syst. Sci. 2008, 12, 77–89. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Huang, N. Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method. Adv. Adapt. Data Anal. 2009, 1, 1–41. [Google Scholar] [CrossRef]
- Liang, C.; Xue, X.; Chen, T.-D. An investigation of the global morphology of stratosphere gravity waves based on COSMIC observations. Chin. J. Geophys. Acta Geophys. Sin. 2014, 57, 3668–3678. [Google Scholar] [CrossRef]
- Tsuda, T.; Nishida, M.; Rocken, C.; Ware, R. A Global Morphology of Gravity Wave Activity in the Stratosphere Revealed by the GPS Occultation Data (GPS/MET). J. Geophys. Res. 2000, 105, 7257–7274. [Google Scholar] [CrossRef]
- Yang, S.-S.; Pan, C.J.; Das, U.; Lai, H.C. Analysis of synoptic scale controlling factors in the distribution of gravity wave potential energy. J. Atmos. Solar-Terr. Phys. 2015, 135, 126–135. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Pan, X.; Xing, Z.; Tian, C.; Wang, H.; Liu, H. A method based on GA-LSSVM for COP prediction and load regulation in the water chiller system. Energy Build. 2021, 230, 110604. [Google Scholar] [CrossRef]
- Chen, L.; Mcphee, J.; Yeh, W. A Diversified Multiobjective GA for Optimizing Reservoir Rule Curves. Adv. Water Resour. 2007, 30, 1082–1093. [Google Scholar] [CrossRef]
- Hoffmann, L.; Xue, X.; Alexander, M.J. A global view of stratospheric gravity wave hotspots located with atmospheric infrared sounder observations. J. Geophys. Res. Atmos. 2013, 118, 416–434. [Google Scholar] [CrossRef] [Green Version]
- Li, M. Studies on the gravity wave initiation of the excessively heavy rainfall. Chin. J. Atmos. Sci. 1978, 2, 201–209. [Google Scholar] [CrossRef]
- Mirabbasi, R.; Kisi, O.; Sanikhani, H.; Gajbhiye Meshram, S. Monthly long-term rainfall estimation in Central India using M5Tree, MARS, LSSVR, ANN and GEP models. Neural Comput. Appl. 2019, 31, 6843–6862. [Google Scholar] [CrossRef]
Evaluation Indices | |||
RMSE | Root Mean Square Error | R2 | Coefficient of Determination |
MAE | Mean Absolute Error | ||
Meteorological Indices | |||
Niño 1+2 | Sea Surface Temperature (SST) in the Niño 1+2 region | STA | SST in the South Tropical Atlantic |
Niño 3 | SST in the Niño 3 region | AO | Arctic Oscillation |
Niño 4 | SST in the Niño 4 region | SOI | Southern Oscillation Index |
Niño 3+4 | SST in the Niño 3+4 region | PNA | Pacific-North America Index |
NP | North Pacific Teleconnection | WP | Western Pacific Teleconnection |
NAO | North Atlantic Oscillation | TNI | Trans Niño Index |
ONI | Ocean Niño Index | TSA | Tropical South Atlantic Index |
MEI | Multivariate ENSO Index | TNA | Tropical North Atlantic Index |
NTA | SST in the Northern Tropical Atlantic | EAWR | East Atlantic Western Russia |
PDO | Pacific Decadal Oscillation | WHWP | Western Hemisphere Warm Pool |
Other Indices | |||
Ep | Potential Energy of Gravity Waves | T | Temperature |
Component | Original Data | IMF1 | IMF2 | IMF3 | IMF4 | |
Time-delayed correlation coefficient (the first two largest) | T 0.887 (0) | NP 0.119 (9) | T 0.933 (0) | T 0.511 (0) | Niño 4 −0.305 (2) | |
Niño 1+2 0.802 (4) | NAO 0.097 (9) | Niño 1+2 0.849 (4) | Niño 1+2 0.471 (4) | Niño 4 −0.302 (3) | ||
Component | IMF5 | IMF6 | IMF7 | IMF8 | R | |
Time-delayed correlation coefficient (the first two largest) | ONI −0.228 (2) | NAO −0.194 (6) | NTA 0.122 (0) | NTA −0.331 (0) | NTA 0.552 (0) | |
MEI 0.227 (1) | MEI −0.188 (1) | NTA −0.12 (1) | NTA −0.229 (1) | NTA 0.551 (1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lei, J.; Quan, Q.; Li, P.; Yan, D. Research on Monthly Precipitation Prediction Based on the Least Square Support Vector Machine with Multi-Factor Integration. Atmosphere 2021, 12, 1076. https://doi.org/10.3390/atmos12081076
Lei J, Quan Q, Li P, Yan D. Research on Monthly Precipitation Prediction Based on the Least Square Support Vector Machine with Multi-Factor Integration. Atmosphere. 2021; 12(8):1076. https://doi.org/10.3390/atmos12081076
Chicago/Turabian StyleLei, Jingchun, Quan Quan, Pingzhi Li, and Denghua Yan. 2021. "Research on Monthly Precipitation Prediction Based on the Least Square Support Vector Machine with Multi-Factor Integration" Atmosphere 12, no. 8: 1076. https://doi.org/10.3390/atmos12081076
APA StyleLei, J., Quan, Q., Li, P., & Yan, D. (2021). Research on Monthly Precipitation Prediction Based on the Least Square Support Vector Machine with Multi-Factor Integration. Atmosphere, 12(8), 1076. https://doi.org/10.3390/atmos12081076