Review of the JCAP/JATOP Air Quality Model Study in Japan
Abstract
:1. Introduction
- Establish an emission inventory and improve accuracy;
- Apply an Urban Air Quality Model to Japan and improve prediction accuracy;
- Develop a Roadside Air Quality Model and improve prediction accuracy;
- Predict the future air quality and analyze the direction of effective measures.
2. Urban Air Quality Model
2.1. Outline of Urban Air Quality Model
2.2. Emission Inventory for the Urban Air Quality Model
2.2.1. Automobile Emission
Outline of the Estimation Procedure
High Emitting Vehicles
2.2.2. Emission Inventory for Other Sources
G-BEAMS: Georeference-Based Emission Activity Modeling System
Biogenic VOC Sources
Volcanic Emissions
2.3. Urban Air Quality Model
2.3.1. Outline
2.3.2. Secondary Organic Aerosol (SOA) Model
- The reaction parameters when secondary organic compounds (SOA) are generated from plant-derived VOCs (only NO non-coexistence reactions specific to forests are extracted) were updated.
- A further pathway was added for the reaction product to react with OH.
2.4. Application of Urban Air Quality Model
2.4.1. Future Air Quality Prediction
Future Emission Inventory Scenario
Future Air Quality Prediction
2.4.2. Source Sensitivity Analysis
3. Roadside Air Quality Model
3.1. Outline
3.2. Transient Emission Inventory Model
3.3. Analysis of the Flow Field by Computational Fluid Dynamics
3.4. Roadside NO2 Formation Process
3.5. Simulation Results
4. Active Use of Air Quality Study Results
4.1. Contribution to Policy Making Processes
4.2. JATOP Emission Inventory, JEI-DB Release
5. Conclusions
- Japanese emission inventory was created and provided the basis for the national inventory.
- The Regional Air Quality Model was applied to Japan to evaluate the effects of various measures and has provided scientific knowledge that continues to contribute to national environment policies.
- Disclosing the Air Quality Model and inventory contributed to the promotion of atmospheric research in Japan.
- Regarding emission inventory, the remaining issues are the maintenance of the national inventory/establishment of emission measurement methods from fixed sources/source profiles based on actual measurement data/improvement of spatiotemporal allocation methods/enhanced activity statistics/establishing an inventory maintenance system/updating system/ensuring consistency with other inventories.
- Regarding the Regional Air Quality Model, the remaining issues are improvement of reproducibility of the PM2.5 component/elucidation, modeling of the SOA generation mechanism/elucidation, modeling of condensation/volatilization mechanism of condensable particles/elucidation, and modeling of the reaction mechanism of VOC component research.
- Development of evaluation methods such as future estimation and the elucidation of source contribution are still necessary.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McRae, G.J.; Russell, A.G.; Harley, R.A. CIT Photochemical Airshed Model–Data Preparation Manual; Carnegie Mellon University and California Institute of Technology: Pittsburgh, PA, USA, 1992; p. 127. [Google Scholar]
- McRae, G.J.; Russell, A.G.; Harley, R.A. CIT Photochemical Airshed Model–Installation and Operation Manual; Carnegie Mellon University and California Institute of Technology: Pittsburgh, PA, USA, 1992; p. 37. [Google Scholar]
- McRae, G.J.; Russell, A.G.; Harley, R.A. CIT Photochemical Airshed Model—System Manual; Carnegie Mellon University and California Institute of Technology: Pittsburgh, PA, USA, 1992; p. 17. [Google Scholar]
- Systems Applications International (SAI). User’s Guide for the Urban Airshed Model. Volume I User’s Manual for UAM (CB-IV); Report No. SYSAPP-90/018a; Systems Applications International: San Rafael, CA, USA, 1994; p. 259. [Google Scholar]
- Systems Applications International (SAI). User’s Guide for the Urban Airshed Model. Volume II: Preprocessors and Postprocessors for the UAM Modeling System; Report No. SYSAPP-90/018b; Systems Applications International: San Rafael, CA, USA, 1994; p. 485. [Google Scholar]
- Odman, M.T.; Russell, A.G. A multiscale finite element pollutant transport scheme for urban and regional modeling. Atmos. Environ. Part A Gen. Top. 1991, 25, 2385–2394. [Google Scholar] [CrossRef]
- Byun, D.W.; Ching, J.K.S. Science Algorithms of the EPA Models-3 Community Multiscale Air Quality (CMAQ) Modeling System, EPA/600/R-99/030. 1990. Available online: https://www.cmascenter.org/cmaq/science_documentation/ (accessed on 1 June 2021).
- Pielke, R.A.; Cotton, W.R.; Walko, R.L.; Tremback, C.J.; Lyons, W.A.; Grasso, L.D.; Nicholls, M.E.; Moran, M.D.; Wesley, D.A.; Lee, T.J.; et al. A comprehensive meteorological modeling system? RAMS. Theor. Appl. Clim. 1992, 49, 69–91. [Google Scholar] [CrossRef]
- Suzuki, M.; Nakanishi, M. Numerical analysis of the severe air pollution episode of Ox and NO2 with a prediction model including photochemical reactions. Wind. Eng. JAWE 1998, 1998, 61–66. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 2, NCAR Technical Notes, NCAR/TN-468+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2005; p. 88. [Google Scholar]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.Y.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3; NCAR Technical Notes, NCAR/TN-475+STR; National Center for Atmospheric Research: Boulder, CO, USA, 2008; p. 113. [Google Scholar]
- Reddy, S.R. Prediction of Fuel Vapor Generation from a Vehicle Fuel Tank as a Function of Fuel RVP and Temperature; SAE Technical Paper 892089; SAE International: Warrendale, PA, USA, 1989; p. 12. [Google Scholar] [CrossRef]
- Doki, S.; Kunimi, H. Measurement of Tire Wear Dust at the Roadside and Estimation of Emission Factor for Tire Wear. J. Jpn. Soc. Atmos. Environ. 2006, 41, 144–163. (In Japanese) [Google Scholar] [CrossRef]
- Kinugasa, Y.; Kunimi, H.; Doki, S.-I.; Nagao, M. Gasoline Vehicles High-Emitter Estimation Using Remote Sensing Device. Trans. Jpn. Soc. Mech. Eng. Ser. B 2007, 73, 1480–1485. [Google Scholar] [CrossRef]
- Volatile Organic Compound Emission Inventory Study Group. Report on Volatile Organic Compound (VOC) Emission Inventory, 2007–Present. Available online: http://www.env.go.jp/air/osen/voc/inventory.html (accessed on 1 June 2021). (In Japanese).
- Guenther, A. Corrigendum to “Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature)” published in Atmos. Chem. Phys., 6, 3181–3210, 2006. Atmos. Chem. Phys. Discuss. 2007, 7, 4327. [Google Scholar] [CrossRef] [Green Version]
- Guenther, A.B.; Jiang, X.; Heald, C.L.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L.K.; Wang, X. The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): An extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 2012, 5, 1471–1492. [Google Scholar] [CrossRef] [Green Version]
- Matsunaga, S.N.; Muller, O.; Chatani, S.; Nakamura, M.; Nakaji, T.; Hiura, T. Seasonal variation of isoprene basal emission in mature Quercus crispula trees under experimental warming of roots and branches. Geochem. J. 2012, 46, 163–167. [Google Scholar] [CrossRef] [Green Version]
- Matsunaga, N.S.; Chatani, S.; Nakatsuka, S.; Kusumoto, D.; Kubota, K.; Utsumi, Y.; Enoki, T.; Tani, A.; Hiura, T. Determination and potential importance of diterpene (kaur-16-ene) emitted from dominant coniferous trees in Japan. Chemosphere 2012, 87, 886–893. [Google Scholar] [CrossRef] [Green Version]
- Chatani, S.; Matsunaga, S.N.; Nakatsuka, S. Estimate of biogenic VOC emissions in Japan and their effects on photochemical formation of ambient ozone and secondary organic aerosol. Atmos. Environ. 2015, 120, 38–50. [Google Scholar] [CrossRef]
- Andres, R.; Kasgnoc, A.D. A time-averaged inventory of subaerial volcanic sulfur emissions. J. Geophys. Res. Space Phys. 1998, 103, 25251–25261. [Google Scholar] [CrossRef]
- Diehl, T.; Heil, A.; Chin, M.; Pan, X.; Streets, D.; Schultz, M.; Kinne, S. Anthropogenic, biomass burning, and volcanic emissions of black carbon, organic carbon, and SO2 from 1980 to 2010 for hindcast model experiments. Atmos. Chem. Phys. Discuss. 2012, 12, 24895–24954. [Google Scholar] [CrossRef] [Green Version]
- Japan Meteorological Agency and Volcanological Society of Japan, National Catalogue of the Active Volcanoes in Japan (The Fourth Edition, English Version). Available online: https://www.data.jma.go.jp/svd/vois/data/tokyo/STOCK/souran_eng/menu.htm (accessed on 1 June 2021).
- Kanda, M.; Kawai, T.; Nakagawa, K. A Simple Theoretical Radiation Scheme for Regular Building Arrays. Bound. Layer Meteorol. 2005, 114, 71–90. [Google Scholar] [CrossRef]
- Chatani, S.; Shimo, N.; Matsunaga, S.; Kajii, Y.; Kato, S.; Nakashima, Y.; Miyazaki, K.; Ishii, K.; Ueno, H. Sensitivity analyses of OH missing sinks over Tokyo metropolitan area in the summer of 2007. Atmos. Chem. Phys. Discuss. 2009, 9, 8975–8986. [Google Scholar] [CrossRef] [Green Version]
- Takekawa, H.; Minoura, H.; Yamazaki, S. Temperature dependence of secondary organic aerosol formation by photo-oxidation of hydrocarbons. Atmos. Environ. 2003, 37, 3413–3424. [Google Scholar] [CrossRef]
- Chatani, S.; Morikawa, T.; Nakatsuka, S.; Matsunaga, S.; Minoura, H. Development of a framework for a high-resolution, three-dimensional regional air quality simulation and its application to predicting future air quality over Japan. Atmos. Environ. 2011, 45, 1383–1393. [Google Scholar] [CrossRef]
- Yoshikawa, Y.; Kunimi, H.; Ishizawa, S. Numerical Simulation Model for Predicting Air Quality along Urban Main Roads (1st Report, Development of Atmospheric Diffusion Model). Trans. Jpn. Soc. Mech. Eng. B 1997, 63, 2507–2514. (In Japanese) [Google Scholar] [CrossRef] [Green Version]
- Rathi, A.K.; Santiago, A.J. Urban Network Simulation: TRAF-NETSIM Program. Transp. Eng. 1990, 116, 734–743. [Google Scholar] [CrossRef]
- Yoshikawa, Y.; Hayashi, S.; Hirai, H.; Uehara, K. Roadside Air Quality Model for Urban Main Roads in Japan Clean Air Program (I) -Development of the Simulation Model. J. Jpn. Soc. Atmos. Environ. 2003, 38, 269–286. (In Japanese) [Google Scholar] [CrossRef]
- Yoshikawa, Y.; Hayashi, S.; Hirai, H.; Uehara, K. Roadside Air Quality Model for Urban Main Roads in Japan Clean Air Program (II) -Case Study, Effect of Traffic Volume reduction and Idle Stop on Roadside Air Quality. J. Jpn. Soc. Atmos. Environ. 2003, 38, 287–300. (In Japanese) [Google Scholar] [CrossRef]
- Takekawa, H.; Chatani, S.; Ito, A. A new approach for estimation of the effect of NOx emission reduction on roadside NO2 concentration in Tokyo. Atmos. Environ. 2013, 68, 92–102. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. SPECIATE Version 4.4. 2014. Available online: https://www.epa.gov/air-emissions-modeling/speciate-4 (accessed on 13 July 2021).
- Kurokawa, J.; Ohara, T.; Morikawa, T.; Hanayama, S.; Janssens-Maenhout, G.; Fukui, T.; Kawashima, K.; Akimoto, H. Emissions of air pollutants and greenhouse gases over Asian regions during 2000–2008: Regional Emission inventory in ASia (REAS) version 2. Atmos. Chem. Phys. 2013, 13, 11019–11058. [Google Scholar] [CrossRef] [Green Version]
- Shimadera, H.; Kojima, T.; Kondo, A. Evaluation of Air Quality Model Performance for Simulating Long-Range Transport and Local Pollution of PM2.5in Japan. Adv. Meteorol. 2016, 2016, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Chatani, S.; Yamaji, K.; Sakurai, T.; Itahashi, S.; Shimadera, H.; Kitayama, K. Hayami, H. Overview of Model Inter-Comparison in Japan’s Study for Reference Air Quality Modeling (J-STREAM). Atmosphere 2018, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Kunugi, Y.; Arimura, T.H.; Iwata, K.; Komatsu, E.; Hirayama, Y. Cost-efficient strategy for reducing PM 2.5 levels in the Tokyo metropolitan area: An integrated approach with air quality and economic models. PLoS ONE 2018, 13, e0207623. [Google Scholar] [CrossRef]
- Japan Petroleum Energy Center. PM2.5 Emission Inventory and Source Profile. 2017; 277, in press. (In Japanese) [Google Scholar]
- Formulation Committee for PM2.5 Emission Inventory and Source Profile. PM2.5 Emission Inventory and Source Profile. 2019; 380, in press. (In Japanese) [Google Scholar]
- Kannari, A.; Tonooka, Y.; Baba, T.; Murano, K. Development of multiple-species 1 km × 1 km resolution hourly basis emissions inventory for Japan. Atmos. Environ. 2007, 41, 3428–3439. [Google Scholar] [CrossRef]
- Fukui, T.; Kokuryo, K.; Baba, T.; Kannari, A. Updating EAGrid2000-Japan emissions inventory based on the recent emission trends. J. Jpn. Soc. Atmos. Environ. 2014, 49, 117–125. (In Japanese) [Google Scholar] [CrossRef]
- Japan Petroleum Energy Center. PM2.5 Emission Inventory and Source Profile. 2014; 224. (in Japanese) [Google Scholar]
- Japan Petroleum Energy Center. PM2.5 Emission Inventory and Source Profile, Estimation Manual. 2015; 1904. (in Japanese) [Google Scholar]
- Japan Petroleum Energy Center. PM2.5 Emission Inventory and Source Profile. 2017; 289. (in Japanese) [Google Scholar]
- The Ocean Policy Research Foundation. Research report on the environmental impact of particulate matter (PM) of ship origin. 2007; 341. (in Japanese) [Google Scholar]
- Bureau of Environment Tokyo Metropolitan Government and Tokyo Metropolitan Research Institute for Environmental Protection. Emission inventory report of fine particulate matter (PM2.5) etc. 2011; 86. (in Japanese) [Google Scholar]
- Ministry of the Environment, Environmental Health Department, Environmental Health and Safety Division. PRTR Data Page, 2001-present. Available online: http://www2.env.go.jp/chemi/prtr/prtrinfo/e-index.html (accessed on 1 June 2021).
Reaction | Rate Constant | Unit |
---|---|---|
(R1) NO2 + hν→ NO + O | 8.8 × 10−3 | s−1 |
(R2) NO + O3 → NO2 + O2 | 2.0 × 10−12 exp (−1400/T) | cm3 molecule−1 s−1 |
(R3) NO2 + O → NO + O2 | 6.5 × 10−12 exp (120/T) | cm3 molecule−1 s−1 |
(R4) O3 + hν→ O + O2 | 4.8 × 10−4 | s−1 |
(R5) O + O2 + M → O3 + M | 6.0 × 10−34 exp (T/300)−2.3 | cm6 molecule−2 s−1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shibata, Y.; Morikawa, T. Review of the JCAP/JATOP Air Quality Model Study in Japan. Atmosphere 2021, 12, 943. https://doi.org/10.3390/atmos12080943
Shibata Y, Morikawa T. Review of the JCAP/JATOP Air Quality Model Study in Japan. Atmosphere. 2021; 12(8):943. https://doi.org/10.3390/atmos12080943
Chicago/Turabian StyleShibata, Yoshiaki, and Tazuko Morikawa. 2021. "Review of the JCAP/JATOP Air Quality Model Study in Japan" Atmosphere 12, no. 8: 943. https://doi.org/10.3390/atmos12080943
APA StyleShibata, Y., & Morikawa, T. (2021). Review of the JCAP/JATOP Air Quality Model Study in Japan. Atmosphere, 12(8), 943. https://doi.org/10.3390/atmos12080943