Vertical Distribution of Aerosols during Deep-Convective Event in the Himalaya Using WRF-Chem Model at Convection Permitting Scale
Abstract
:1. Introduction
2. Data and Methodology
2.1. Observations
2.2. Model Setup
3. Results and Discussion
3.1. Precipitation Analysis
3.2. Monsoon Dynamics
3.3. Cloud Property
3.4. Aerosol Concentration
concentration (event day)
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dimri, A.P.; Chevuturi, A.; Niyogi, D.; Thayyen, R.J.; Ray, K.; Tripathi, S.N.; Pandey, A.K.; Mohanty, U.C. Cloudbursts in Indian Himalayas: A review. Earth-Sci. Rev. 2017, 168, 1–23. [Google Scholar] [CrossRef]
- Das, S.; Ashrit, R.; Moncrieff, M.W. Simulation of a Himalayan cloudburst event. J. Earth Syst. Sci. 2006, 115, 299–313. [Google Scholar] [CrossRef] [Green Version]
- Lau, W.K.M.; Kim, K.M.; Shi, J.J.; Matsui, T.; Chin, M.; Tan, Q.; Peters-Lidard, C.; Tao, W.K. Impacts of aerosol–monsoon interaction on rainfall and circulation over Northern India and the Himalaya Foothills. Clim. Dyn. 2017, 49, 1945–1960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kedia, S.; Vellore, R.K.; Islam, S.; Kaginalkar, A. A study of Himalayan extreme rainfall events using WRF-Chem. Meteorol. Atmos. Phys. 2018, 131, 1133–1143. [Google Scholar] [CrossRef]
- Gautam, R.; Hsu, N.C.; Lau, K.M.; Tsay, S.C.; Kafatos, M. Enhanced pre-monsoon warming over the Himalayan-Gangetic region from 1979 to 2007. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Ojha, N.; Sharma, A.; Kumar, M.; Girach, I.; Ansari, T.U.; Sharma, S.K.; Singh, N.; Pozzer, A.; Gunthe, S.S. On the widespread enhancement in fine particulate matter across the Indo-Gangetic Plain towards winter. Sci. Rep. 2020, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saikia, A.; Pathak, B.; Singh, P.; Bhuyan, P.K.; Adhikary, B. Multi-model evaluation of meteorological drivers, air pollutants and quantification of emission sources over the upper Brahmaputra basin. Atmosphere 2019, 10, 703. [Google Scholar] [CrossRef] [Green Version]
- Seinfeld, J.H.; Carmichael, G.R.; Arimoto, R.; Conant, W.C.; Brechtel, F.J.; Bates, T.S.; Cahill, T.A.; Clarke, A.D.; Doherty, S.J.; Flatau, P.J.; et al. ACE-ASIA: Regional climatic and atmospheric chemical effects of Asian dust and pollution. Bull. Am. Meteorol. Soc. 2004, 85, 367–380. [Google Scholar] [CrossRef]
- Devara, P.C.S.; Manoj, M.G. Aerosol-cloud-precipitation interactions: A challenging problem in regional environment and climate research. Particuology 2013, 11, 25–33. [Google Scholar] [CrossRef]
- Lebo, Z.J.; Feingold, G. On the relationship between responses in cloud water and precipitation to changes in aerosol. Atmos. Chem. Phys. 2014, 14, 11817–11831. [Google Scholar] [CrossRef] [Green Version]
- Stevens, B.; Feingold, G. Untangling aerosol effects on clouds and precipitation in a buffered system. Nature 2009, 461, 607–613. [Google Scholar] [CrossRef]
- Andreae, M.O.; Rosenfeld, D. Aerosol-cloud-precipitation interactions. Part 1. The nature and sources of cloud-active aerosols. Earth-Sci. Rev. 2008, 89, 13–41. [Google Scholar] [CrossRef]
- Solomos, S.; Kallos, G.; Kushta, J.; Astitha, M.; Tremback, C.; Nenes, A.; Levin, Z. An integrated modeling study on the effects of mineral dust and sea salt particles on clouds and precipitation. Atmos. Chem. Phys. 2011, 11, 873–892. [Google Scholar] [CrossRef] [Green Version]
- Lin, J.C.; Matsui, T.; Pielke, S.A.; Kummerow, C. Effects of biomass-burning-derived aerosols on precipitations and clouds in the Amazon Basin: A satellite-based empirical study. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef] [Green Version]
- Bond, T.C.; Doherty, S.J.; Fahey, D.W.; Forster, P.M.; Berntsen, T.; Deangelo, B.J.; Flanner, M.G.; Ghan, S.; Kärcher, B.; Koch, D.; et al. Bounding the role of black carbon in the climate system: A scientific assessment. J. Geophys. Res. Atmos. 2013, 118, 5380–5552. [Google Scholar] [CrossRef]
- Khain, A.; Rosenfeld, D.; Pokrovsky, A. Aerosol impact on the dynamics and microphysics of deep convective clouds. Q. J. R. Meteorol. Soc. 2005, 131, 2639–2663. [Google Scholar] [CrossRef] [Green Version]
- Koren, I.; Kaufman, Y.J.; Rosenfeld, D.; Remer, L.A.; Rudich, Y. Aerosol invigoration and restructuring of Atlantic convective clouds. Geophys. Res. Lett. 2005, 32, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Tao, W.K.; Chen, J.-P.; Li, Z.; Wang, C.; Zhang, C. Impact of Aerosols on Convective Clouds and Precipitation. Rev. Geophys. 2012, 50, 1–62. [Google Scholar] [CrossRef] [Green Version]
- Bègue, N.; Tulet, P.; Pelon, J.; Aouizerats, B.; Berger, A.; Schwarzenboeck, A. Aerosol processing and CCN formation of an intense Saharan dust plume during the EUCAARI 2008 campaign. Atmos. Chem. Phys. 2015, 15, 3497–3516. [Google Scholar] [CrossRef] [Green Version]
- Rosenfeld, D.; Lohmann, U.; Raga, G.B.; O’Dowd, C.D.; Kulmala, M.; Fuzzi, S.; Reissell, A.; Andreae, M.O. Flood or Drought: How Do Aerosols Affect Precipitation? Science 2008, 321, 1309–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nandargi, S.; Dhar, O.N. Extreme Rainstorm Events over the Northwest Himalayas during 1875–2010. J. Hydrometeorol. 2012, 13, 1383–1388. [Google Scholar] [CrossRef]
- Singh, R.; Siingh, D.; Gokani, S.A.; Buchunde, P.S.; Singh, R.P.; Singh, A.K. Brief Communication: Climate, topographical and meteorological investigation of the 16–17 June 2013 Kedarnath (India) disaster causes. Nat. Hazards Earth Syst. Sci. Discuss. 2015, 3, 941–953. [Google Scholar] [CrossRef]
- Singh, C.; Chand, R. Exceptionally heavy rainfall over Uttarakhand during 15–18 June, 2013-A case study. Mausam 2015, 66, 741–750. [Google Scholar]
- Chawla, I.; Osuri, K.K.; Mujumdar, P.P.; Niyogi, D. Assessment of the Weather Research and Forecasting (WRF) model for simulation of extreme rainfall events in the upper Ganga Basin. Hydrol. Earth Syst. Sci. 2018, 22, 1095–1117. [Google Scholar] [CrossRef] [Green Version]
- Ray, K.; Bhan, S.C.; Sunitha Devi, S. A Meteorological Analysis of Very Heavy Rainfall Event over Uttarakhand during 14–17 June, 2013; India Meteorological Department: Delhi, India, 2014; pp. 37–54.
- Shukla, D.P.; Dubey, C.S.; Usham, A.L. Orographic Control of the Kedarnath disaster Orographic control of the Kedarnath disaster. Curr. Sci. 2013, 105, 1474–1476. [Google Scholar]
- Satoh, M.; Tomita, H.; Miura, H.; Iga, S.; Nasuno, T. Development of a global cloud resolving model–A multi-scale structure of tropical convections. J. Earth Simulator 2005, 3, 11–19. [Google Scholar]
- Grabowski, W.W. Toward Cloud Resolving Modeling of Large-Scale Tropical Circulations: A Simple Cloud Microphysics Parameterization. Am. Meteorol. Soc. 1998, 55, 3283–3298. [Google Scholar] [CrossRef]
- Kilaru, A.; Kotamraju, S.K.; Avlonitis, N.; Sri Kavya, K.C. Rain rate intensity model for communication link design across the Indian region. J. Atmos. Sol.-Terr. Phys. 2016, 145, 136–142. [Google Scholar] [CrossRef]
- Powers, J.G.; Klemp, J.B.; Skamarock, W.C.; Davis, C.A.; Dudhia, J.; Gill, D.O.; Coen, J.L.; Gochis, D.J.; Ahmadov, R.; Peckham, S.E.; et al. The weather research and forecasting model: Overview, system efforts, and future directions. Bull. Am. Meteorol. Soc. 2017, 98, 1717–1737. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhi, J.; Gill, D.O.; Barker, D.M.; Duda, M.G.; Huang, X.-Y.; Wang, W.; Powers, J.G.; Dudhia, J.; et al. A Description of the Advanced Research WRF Version 3; NCAR Techical Note-475+ STR; NCAR: Pod, CL, USA, 2008. [Google Scholar] [CrossRef]
- Grell, G.A.; Peckham, S.E.; Schmitz, R.; Mckeen, S.A.; Frost, G.; Skamarock, W.C.; Eder, B. Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 2005, 39, 6957–6975. [Google Scholar] [CrossRef]
- Singh, P.; Adhikary, B.; Sarawade, P. Transport of black carbon from planetary boundary layer to free troposphere on a seasonal scale over South Asia. Atmos. Res. 2020, 235, 104761. [Google Scholar] [CrossRef]
- Janssens-Maenhout, G.; Dentener, F.; Van Aardenne, J.; Monni, S.; Pagliari, V.; Orlandini, L.; Klimont, Z.; Kurokawa, J.; Akimoto, H.; Ohara, T.; et al. EDGAR-HTAP: A Harmonized Gridded Air Pollution Emission Dataset Based on National Inventories; Commission Publications Office: Spra, Italy, 2012; ISBN 9789279231230. [Google Scholar]
- Kain, J.S. The Kain–Fritsch Convective Parameterization: An Update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.-Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Dudhia, J. Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Weather Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef] [Green Version]
- Tewari, M.; Chen, F.; Wang, W.; Dudhia, J.; LeMone, M.A.; Mitchell, K.; Ek, M.; Gayno, G.; Wegiel, J.; Cuenca, R.H. Implementation and verification of the unified noah land surface model in the WRF model. Bull. Am. Meteorol. Soc. 2004, 2165–2170. [Google Scholar] [CrossRef]
- Paulson, C.A. The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer. J. Appl. Meteorol. 1970, 9, 857–861. [Google Scholar] [CrossRef]
- Madronich, S.; Weller, G. Numerical integration errors in calculated tropospheric photodissociation rate coefficients. J. Atmos. Chem. 1990, 10, 289–300. [Google Scholar] [CrossRef]
- Castorina, G.; Caccamo, M.T.; Colombo, F.; Magazù, S. The role of physical parameterizations on the numerical weather prediction: Impact of different cumulus schemes on weather forecasting on complex orographic areas. Atmosphere 2021, 12, 616. [Google Scholar] [CrossRef]
- Mishra, A.; Srinivasan, J. Did a cloud burst occur in Kedarnath during 16 and 17 June 2013? Curr. Sci. 2013, 105, 16–18. [Google Scholar]
- Sikka, D.R. Synoptic and Meso-Scale Weather Disturbances over South Asia during the Southwest Summer Monsoon Season, 2nd ed.; Chang, C.-P., Ding, Y., Lau, N.-C., Johnson, R.H., Wang, B., Yasunari, T., Eds.; World Scientific: Singapore, 2010; ISBN 9789814343404. [Google Scholar]
- Stuefer, M.; Freitas, S.R.; Grell, G.; Webley, P.; Peckham, S.; McKeen, S.A.; Egan, S.D. Inclusion of ash and SO2 emissions from volcanic eruptions in WRF-Chem: Development and some applications. Geosci. Model Dev. 2013, 6, 457–468. [Google Scholar] [CrossRef] [Green Version]
- Rizza, U.; Brega, E.; Caccamo, M.T.; Castorina, G.; Morichetti, M.; Munaò, G.; Passerini, G.; Magazù, S. Analysis of the etna 2015 eruption using wrf– chem model and satellite observations. Atmosphere 2020, 11, 1168. [Google Scholar] [CrossRef]
- Misenis, C.; Zhang, Y. An examination of sensitivity of WRF/Chem predictions to physical parameterizations, horizontal grid spacing, and nesting options. Atmos. Res. 2010, 97, 315–334. [Google Scholar] [CrossRef]
- Singh, P.; Sarawade, P.; Adhikary, B. Carbonaceous aerosol from open burning and its impact on regional weather in South Asia. Aerosol Air Qual. Res. 2020, 20, 419–431. [Google Scholar] [CrossRef] [Green Version]
- Eckhardt, S.; Quennehen, B.; Olivié, D.J.L.; Berntsen, T.K.; Cherian, R.; Christensen, J.H.; Collins, W.; Crepinsek, S.; Daskalakis, N.; Flanner, M.; et al. Current model capabilities for simulating black carbon and sulfate concentrations in the Arctic atmosphere: A multi-model evaluation using a comprehensive measurement data set. Atmos. Chem. Phys. 2015, 15, 9413–9433. [Google Scholar] [CrossRef] [Green Version]
- Tajbakhsh, S.; Ghafarian, P.; Sahraian, F. Instability indices and forecasting thunderstorms: The case of 30 April 2009. Nat. Hazards Earth Syst. Sci. 2012, 12, 403–413. [Google Scholar] [CrossRef]
- Singh, P. Prediction of Potential Thunderstorm Over Ocean near Sriharikota. Int. J. Interdiscip. Res. Innov. 2015, 3, 1–6. [Google Scholar]
- Hirtl, M.; Stuefer, M.; Arnold, D.; Grell, G.; Maurer, C.; Natali, S.; Scherllin-Pirscher, B.; Webley, P. The effects of simulating volcanic aerosol radiative feedbacks with WRF-Chem during the EyjafjallajÖkull eruption, April and May 2010. Atmos. Environ. 2019, 198, 194–206. [Google Scholar] [CrossRef]
Simulations | WC25 | WRF25 | WC4 | WRF4 |
---|---|---|---|---|
Centered at | 22° N, 78° E | 30° N, 80° E | ||
Resolution | 25 × 25 km | 4 × 4 km | ||
No. of grids | 130 × 203 × 40 | 223 × 555 × 40 | ||
Domain | 6.5–36.0° N, 53.0–103.0° E | 28–32.0° N, 74.25–85.75° E | ||
Chemistry Scheme | MOZCART | - | MOZCART | - |
Convective parameterization | Kain–Fritsch Scheme [35] | |||
Planetary boundary layer physics | Yonsei University Scheme (YSU) [36] | |||
Shortwave radiation physics | Dudhia Shortwave Scheme [37] | |||
Microphysics | Thompson graupel scheme [38] | |||
Longwave radiation physics | RRTM Longwave Scheme [39] | |||
Land-atmosphere interaction | Unified Noah Land Surface Model scheme [40] | |||
Surface layer option | MM5 Similarity Scheme [41] | |||
Photolysis | Madronich fast-Ultraviolet-Visible Model (F-TUV) [42] |
Aerosols | 16 June 2013 | |||||||
Δ Column | Δ 850 hPa | Δ 500 hPa | Δ 300 hPa | |||||
ug/m3 | % | ug/m3 | % | ug/m3 | % | ug/m3 | % | |
Black Carbon (BC) | −0.001 | −0.56 | −0.225 | −25.10 | 0.156 | 200.26 | 0.029 | 142.23 |
Organic Carbon (OC) | −0.023 | −2.15 | −1.672 | −28.86 | 1.038 | 226.53 | 0.177 | 240.49 |
DUST1 | 0.685 | 36.86 | 2.409 | 40.01 | 1.124 | 45.43 | 0.352 | 95.92 |
DUST2 | 1.264 | 29.56 | 4.893 | 34.38 | 2.069 | 38.09 | 0.775 | 104.79 |
DUST3 | 0.766 | 26.03 | 3.189 | 30.91 | 1.384 | 40.55 | 0.549 | 137.52 |
DUST4 | −0.054 | −5.85 | −0.764 | −17.66 | 0.357 | 50.64 | 0.149 | 230.30 |
DUST5 | −0.031 | −47.90 | −0.165 | −57.98 | −0.027 | −39.57 | 0.003 | 19.12 |
SEA SALT1 | 0.008 | 93.74 | 0.026 | 71.09 | 0.015 | 210.09 | 0.002 | 41.50 |
SEA SALT2 | 0.075 | 128.65 | 0.22 | 71.48 | 0.146 | 493.88 | 0.021 | 1478.02 |
SEA SALT3 | 0.058 | 152.67 | 0.194 | 87.73 | 0.083 | 540.52 | 0.011 | 3580.23 |
SEA SALT4 | 0.0002 | 873.93 | 0.0011 | 653.67 | 0.0001 | 1481.69 | 0.00001 | 43480.71 |
sulf | −0.028 | −2.82 | −1.349 | −28.99 | 0.711 | 85.37 | 0.126 | 72.73 |
17 June 2013 | ||||||||
Δ Column | Δ 850 hPa | Δ 500 hPa | Δ 300 hPa | |||||
ug/m3 | % | ug/m3 | % | ug/m3 | % | ug/m3 | % | |
BC | 0.03 | 20.82 | −0.039 | −4.36 | 0.154 | 197.75 | 0.031 | 151.07 |
OC | 0.189 | 17.89 | −0.473 | −8.17 | 0.981 | 214.08 | 0.152 | 205.95 |
DUST1 | 0.298 | 16.05 | 1.412 | 23.44 | 0.489 | 19.75 | 0.108 | 29.43 |
DUST2 | 0.615 | 14.37 | 3.033 | 21.31 | 1.212 | 22.31 | 0.227 | 30.63 |
DUST3 | 0.423 | 14.38 | 2.063 | 20.00 | 0.999 | 29.29 | 0.148 | 37.05 |
DUST4 | −0.043 | −4.62 | −0.773 | −17.85 | 0.387 | 54.91 | 0.042 | 64.18 |
DUST5 | −0.025 | −38.44 | −0.137 | −48.18 | −0.012 | −17.96 | 0.001 | −7.58 |
SEA SALT1 | 0.008 | 93.29 | 0.031 | 86.71 | 0.011 | 148.71 | 0.001 | 9.00 |
SEA SALT2 | 0.077 | 132.31 | 0.284 | 91.95 | 0.107 | 362.54 | 0.009 | 690.37 |
SEA SALT3 | 0.036 | 95.69 | 0.137 | 61.89 | 0.047 | 307.40 | 0.004 | 1261.94 |
SEA SALT4 | 0.0001 | 220.35 | 0.0002 | 122.56 | 0.00003 | 291.73 | 0.000002 | 7656.47 |
sulf | −0.056 | −5.60 | −1.087 | −23.37 | 0.405 | 48.55 | 0.073 | 41.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, P.; Sarawade, P.; Adhikary, B. Vertical Distribution of Aerosols during Deep-Convective Event in the Himalaya Using WRF-Chem Model at Convection Permitting Scale. Atmosphere 2021, 12, 1092. https://doi.org/10.3390/atmos12091092
Singh P, Sarawade P, Adhikary B. Vertical Distribution of Aerosols during Deep-Convective Event in the Himalaya Using WRF-Chem Model at Convection Permitting Scale. Atmosphere. 2021; 12(9):1092. https://doi.org/10.3390/atmos12091092
Chicago/Turabian StyleSingh, Prashant, Pradip Sarawade, and Bhupesh Adhikary. 2021. "Vertical Distribution of Aerosols during Deep-Convective Event in the Himalaya Using WRF-Chem Model at Convection Permitting Scale" Atmosphere 12, no. 9: 1092. https://doi.org/10.3390/atmos12091092
APA StyleSingh, P., Sarawade, P., & Adhikary, B. (2021). Vertical Distribution of Aerosols during Deep-Convective Event in the Himalaya Using WRF-Chem Model at Convection Permitting Scale. Atmosphere, 12(9), 1092. https://doi.org/10.3390/atmos12091092