Pacific and Atlantic Multidecadal Variability Relations with the Choco and Caribbean Low-Level Jets during the 1900–2015 Period
Abstract
:1. Introduction
2. Data and Methodology
3. Results
3.1. Low-Frequency Mean States
3.2. CJ-Related Oceanic and Atmospheric Patterns during SON under Distinct Low-Frequency Mean States
3.3. CLLJ-Related Oceanic and Atmospheric Patterns during JJA under Distinct Low-Frequency Mean States
4. Discussion
5. Conclusions
- Variations in the SST anomaly positioning in the eastern Pacific, tropical North Atlantic (TNA)/Caribbean Sea during different mean states restrict the circulation, and the intensity of the CJ and CLLJ.
- The CJ intensification during WAMO/CPDO is associated with cyclonic circulation in the Caribbean region and the Gulf of Mexico, due to anomalous warming in the TNA and Caribbean Sea regions, and the thermal contrast between the eastern Pacific (cold) and TNA (warm). This pattern is less intense during WAMO/WPDO due to a weak thermal contrast between these oceanic regions, and the positioning of cyclonic circulation in the central TNA region.
- For the CLLJ, during CAMO phases (cold TNA), the anticyclonic circulations extended over most of the TNA favor its intensification from 30° W to the Caribbean Sea. In contrast, during WAMO (warm TNA/ Caribbean Sea), the cyclonic circulation near the east coast of the United States restricts its intensification to the Caribbean Sea region.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pabón-Caicedo, J.D.; Eslava-Ramírez, J.A.; Gómez-Torres, R.E. Generalidades de la distribución espacial y temporal de la temperatura del aire y de la precipitación en Colombia. Meteorol. Colomb. 2001, 4, 47–59. [Google Scholar]
- Hastenrath, S. The Intertropical Convergence Zone of the Eastern Pacific revisited. Int. J. Climatol. 2002, 22, 347–356. [Google Scholar] [CrossRef]
- Poveda, G.; Waylen, P.R.; Pulwarty, R.S. Annual and inter-annual variability of the present climate in northern South America and southern Mesoamerica. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2006, 234, 3–27. [Google Scholar] [CrossRef]
- Hoyos, I.; Baquero-Bernal, A.; Jacob, D.; Rodríguez, B. Variability of extreme events in the Colombian Pacific and Caribbean catchment basins. Clim. Dyn. 2013, 40, 1985–2003. [Google Scholar] [CrossRef]
- Guzmán, D.; Ruíz, J.F.; Cadena, M. Regionalización de Colombia Según la Estacionalidad de la Precipitación Media Mensual, a Través Análisis de Componentes Principales (ACP); Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM): Bogotá, Colombia, 2014. [Google Scholar]
- Poveda, G.; Jaramillo, L.; Vallejo, L.F. Seasonal precipitation patterns along pathways of South American low-level jets and aerial rivers. Water Resour. Res. 2014, 50, 98–118. [Google Scholar] [CrossRef]
- Morales, J.; Arias, P.; Martínez, J. Role of Caribbean low-level jet and Choco jet in the transport of moisture patterns towards Central America. In Proceedings of the 1st International Electronic Conference on Hydrological Cycle (CHyCle-2017), Online, 12–16 November 2017; Volume 1, p. 4861. [Google Scholar]
- Bedoya-Soto, J.M.; Aristizábal, E.; Carmona, A.M.; Poveda, G. Seasonal Shift of the Diurnal Cycle of Rainfall Over Medellin’s Valley, Central Andes of Colombia (1998–2005). Front. Earth Sci. 2019, 7, 92. [Google Scholar] [CrossRef]
- Yepes, J.; Poveda, G.; Mejía, J.F.; Moreno, L.; Rueda, C. Choco-jex: A research experiment focused on the Chocó low-level jet over the far eastern Pacific and western Colombia. Bull. Am. Meteorol. Soc. 2019, 100, 779–796. [Google Scholar] [CrossRef]
- Poveda, G.; Mesa, O.J. On the Existence of Lloró (the Rainiest Locality on Earth): Enhanced Ocean-Land-Atmosphere Interaction by a Low-Level Jet. Geophys. Res. Lett. 2000, 27, 1675–1678. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, M.S.; Ambrizzi, T.; Poveda, G. Moisture Sources and Life Cycle of Convective Systems over Western Colombia. Adv. Meteorol. 2011, 2011, 890759. [Google Scholar] [CrossRef]
- Durán-Quesada, A.M.; Gimeno, L.; Amador, J. Role of moisture transport for Central American precipitation. Earth Syst. Dyn. 2017, 8, 147–161. [Google Scholar] [CrossRef] [Green Version]
- Serna, L.M.; Arias, P.A.; Vieira, S.C. Las corrientes superficiales de chorro del Chocó y el Caribe durante los eventos de El Niño y El Niño Modoki. Rev. Acad. Colomb. Cienc. Exactas Físicas Nat. 2018, 42, 410. [Google Scholar] [CrossRef]
- Wang, C. Variability of the Caribbean Low-Level Jet and its relations to climate. Clim. Dyn. 2007, 29, 411–422. [Google Scholar] [CrossRef] [Green Version]
- Amador, J.A. A Climatic Feature of the Tropical Americas: The Trade Wind Easterly Jet. Top. Meteorol. Oceanogr. 1998, 5, 91–102. [Google Scholar]
- Amador, J.A. The Intra-Americas Sea low-level jet: Overview and future research. Ann. N. Y. Acad. Sci. 2008, 1146, 153–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, R.W.; Yao, Y.; Yarosh, E.S.; Janowiak, J.E.; Mo, K.C. Influence of the great plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Clim. 1997, 10, 481–507. [Google Scholar] [CrossRef]
- Algarra, I.; Eiras-Barca, J.; Miguez-Macho, G.; Nieto, R.; Gimeno, L. On the assessment of the moisture transport by the Great Plains low-level jet. Earth Syst. Dyn. 2019, 10, 107–119. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Lee, S.K. Atlantic warm pool, Caribbean low-level jet, and their potential impact on Atlantic hurricanes. Geophys. Res. Lett. 2007, 34, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Arias, P.A.; Martínez, J.A.; Vieira, S.C. Moisture sources to the 2010–2012 anomalous wet season in northern South America. Clim. Dyn. 2015, 45, 2861–2884. [Google Scholar] [CrossRef]
- Gallego, D.; García-Herrera, R.; Gómez-Delgado, F.D.P.; Ordoñez-Perez, P.; Ribera, P. Tracking the moisture transport from the Pacific towards Central and northern South America since the late 19th century. Earth Syst. Dyn. 2019, 10, 319–331. [Google Scholar] [CrossRef] [Green Version]
- Stensrud, D.J. Importance of Low-Level Jets to Climate: A Review. J. Clim. 1996, 9, 1698–1711. [Google Scholar] [CrossRef]
- Xie, S.P.; Xu, H.; Kessler, W.S.; Nonaka, M. Air-sea interaction over the eastern Pacific warm pool: Gaps winds, thermocline dome, and atmospheric convection. J. Clim. 2005, 18, 5–20. [Google Scholar] [CrossRef]
- Chelton, D.B.; Freilich, M.H.; Esbensen, S.K. Satellite Observations of the Wind Jets off the Pacific Coast of Central America. Part I: Case Studies and Statistical Characteristics. Mon. Weather Rev. 2002, 128, 1993–2018. [Google Scholar] [CrossRef]
- Serra, Y.L.; Kiladis, G.N.; Hodges, K.I. Tracking and mean structure of easterly waves over the Intra-Americas Sea. J. Clim. 2010, 23, 4823–4840. [Google Scholar] [CrossRef]
- Wang, C.; Lee, S.K.; Enfield, D.B. Impact of the Atlantic warm pool on the summer climate of the Western Hemisphere. J. Clim. 2007, 20, 5021–5040. [Google Scholar] [CrossRef]
- Cerón, W.L.; Andreoli, R.V.; Kayano, M.T.; Avila-Diaz, A. Role of the eastern Pacific-Caribbean Sea SST gradient in the Choco low-level jet variations from 1900–2015. Clim. Res. 2021, 83, 61–74. [Google Scholar] [CrossRef]
- Poveda, G.; Jaramillo, A.; Gil, M.M.; Quiceno, N.; Mantilla, R.I. Seasonally in ENSO-related precipitation, river discharges, soil moisture, and vegetation index in Colombia. Water Resour. Res. 2001, 37, 2169–2178. [Google Scholar] [CrossRef]
- Amador, J.A.; Alfaro, E.J.; Lizano, O.G.; Magaña, V.O. Atmospheric forcing of the eastern tropical Pacific: A review. Prog. Oceanogr. 2006, 69, 101–142. [Google Scholar] [CrossRef]
- Cerón, W.L.; Andreoli, R.V.; Kayano, M.T.; Souza, R.A.F.; Jones, C.; Carvalho, L.M.V. The Influence of the Atlantic Multidecadal Oscillation on the Choco Low-Level Jet and Precipitation in Colombia. Atmosphere 2020, 11, 174. [Google Scholar] [CrossRef] [Green Version]
- Kayano, M.T.; Andreoli, R.V.; Souza, R.A.F. El Niño–Southern Oscillation related teleconnections over South America under distinct Atlantic Multidecadal Oscillation and Pacific Interdecadal Oscillation backgrounds: La Niña. Int. J. Climatol. 2019, 39, 1359–1372. [Google Scholar] [CrossRef]
- Kayano, M.T.; Andreoli, R.V.; Souza, R.A.F. Pacific and Atlantic multidecadal variability relations to the El Niño events and their effects on the South American rainfall. Int. J. Climatol. 2020, 40, 2183–2200. [Google Scholar] [CrossRef]
- Barichivich, J.; Gloor, E.; Peylin, P.; Brienen, R.J.W.; Schöngart, J.; Espinoza, J.C.; Pattnayak, K.C. Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Sci. Adv. 2018, 4, eaat8785. [Google Scholar] [CrossRef] [Green Version]
- Pattnayak, K.C.; Gloor, E.; Tindall, J.C.; Brienen, R.J.W.; Barichivich, J.; Baker, J.C.A.; Spracklen, D.V.; Cintra, B.B.L.; Coelho, C.A.S. Adding new evidence to the attribution puzzle of the recent water shortage over São Paulo (Brazil). Tellus Ser. A Dyn. Meteorol. Oceanogr. 2018, 70, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Pattnayak, K.C.; Tindall, J.C.; Brienen, R.J.W.; Barichivich, J.; Gloor, E. Can We Detect Changes in Amazon Forest Structure Using Measurements of the Isotopic Composition of Precipitation? Geophys. Res. Lett. 2019, 46, 14807–14816. [Google Scholar] [CrossRef]
- Huang, B.; Thorne, P.W.; Banzon, V.F.; Boyer, T.; Chepurin, G.; Lawrimore, J.H.; Menne, M.J.; Smith, T.M.; Vose, R.S.; Zhang, H.M. Extended reconstructed Sea surface temperature, Version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Clim. 2017, 30, 8179–8205. [Google Scholar] [CrossRef]
- National Oceanic and Atmospheric Administration. Extended Reconstructed Sea Surface Temperature (NOAA/ERSST) SST Data. Available online: https://www.esrl.noaa.gov/psd/data/gridded/ (accessed on 1 March 2018).
- Slivinski, L.C.; Compo, G.P.; Whitaker, J.S.; Sardeshmukh, P.D.; Giese, B.S.; McColl, C.; Allan, R.; Yin, X.; Vose, R.; Titchner, H.; et al. Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system. Q. J. R. Meteorol. Soc. 2019, 145, 2876–2908. [Google Scholar] [CrossRef] [Green Version]
- NOAA-CIRES-DOE Twentieth Century Reanalysis Project Version 3 Monthly Averaged Data from 1836/01 to 2015/12 (Combined SI-MO). Available online: https://psl.noaa.gov/data/gridded/data.20thC_ReanV3.html (accessed on 3 January 2020).
- Compo, G.P.; Whitaker, J.S.; Sardeshmukh, P.D.; Matsui, N.; Allan, R.J.; Yin, X.; Gleason, B.E.; Vose, R.S.; Rutledge, G.; Bessemoulin, P.; et al. The Twentieth Century Reanalysis Project. Q. J. R. Meteorol. Soc. 2011, 137, 1–28. [Google Scholar] [CrossRef]
- Gillespie, I.M.; Haimberger, L.; Compo, G.P.; Thorne, P.W. Assessing potential of sparse-input reanalyses for centennial-scale land surface air temperature homogenisation. Int. J. Climatol. 2021, 41, E3000–E3020. [Google Scholar] [CrossRef]
- Slivinski, L.C.; Compo, G.P.; Sardeshmukh, P.D.; Whitaker, J.S.; McColl, C.; Allan, R.J.; Brohan, P.; Yin, X.; Smith, C.A.; Spencer, L.J.; et al. An evaluation of the performance of the twentieth century reanalysis version 3. J. Clim. 2021, 34, 1417–1438. [Google Scholar] [CrossRef]
- Mantua, N.J.; Hare, S.R.; Zhang, Y.; Wallace, J.M.; Francis, R.C. A Pacific Interdecadal Climate Oscillation with Impacts on Salmon Production. Bull. Am. Meteorol. Soc. 1997, 78, 1069–1079. [Google Scholar] [CrossRef]
- Enfield, D.B.; Mestas-Nuñez, A.M.; Trimble, P.J. The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S. Geophys. Res. Lett. 2001, 28, 2077–2080. [Google Scholar] [CrossRef] [Green Version]
- Panofsky, H.G.; Brier, G.W. Some Applications of Statistics to Meteorology; College of Mineral Industries, Ed.; Mineral Industries Extension Services, Pennsylvania State University: State College, PA, USA, 1968. [Google Scholar]
- Boschat, G.; Simmonds, I.; Purich, A.; Cowan, T.; Pezza, A.B. On the use of composite analyses to form physical hypotheses: An example from heat wave—SST associations. Sci. Rep. 2016, 6, 29599. [Google Scholar] [CrossRef]
- Enfield, D.B.; Mestas-Nuñez, A.M. Multiscale variabilities in global sea surface temperatures and their relationships with tropospheric climate patterns. J. Clim. 1999, 12, 2734–2746. [Google Scholar] [CrossRef]
- Kayano, M.T.; Rosa, M.B.; Rao, V.B.; Andreoli, R.V.; Souza, R.A.F. Relations of the low-level extratropical cyclones in the southeast Pacific and South Atlantic to the Atlantic multidecadal oscillation. J. Clim. 2019, 32, 4167–4178. [Google Scholar] [CrossRef] [Green Version]
- Sierra, J.P.; Arias, P.A.; Durán-Quesada, A.M.; Tapias, K.A.; Vieira, S.C.; Martínez, J.A. The Choco low-level jet: Past, present and future. Clim. Dyn. 2021, 56, 2667–2692. [Google Scholar] [CrossRef]
- Mann, M.E.; Steinman, B.E.; Brouillette, D.J.; Miller, S.K. Multidecadal climate oscillations during the past millennium driven by volcanic forcing. Science 2021, 371, 1014–1019. [Google Scholar] [CrossRef] [PubMed]
Mean State | Intense CJ Years |
---|---|
CAMO/WPDO | 1903, 1906, 1908, 1909, 1910, 1988, 1995 |
CAMO/CPDO | 1963, 1964, 1966, 1970, 1973, 1974, 1975 |
WAMO/WPDO | 1941, 1942, 1944 |
WAMO/CPDO | 1948, 1949, 1950, 1955, 1956, 2003, 2005, 2007, 2010 |
Mean State | Intense CLLJ Years |
---|---|
CAMO/WPDO | 1907, 1908, 1910, 1911, (1925), 1977, 1982, 1986, 1994 |
CAMO/CPDO | 1913, 1914, 1922, 1923, 1965, 1972, 1974, 1976 |
WAMO/WPDO | 1930, 1939, 1940, 1941 |
WAMO/CPDO | 1946, 2001, 2002, 2014, 2015 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerón, W.L.; Kayano, M.T.; Andreoli, R.V.; Avila-Diaz, A.; de Souza, I.P.; Souza, R.A.F. Pacific and Atlantic Multidecadal Variability Relations with the Choco and Caribbean Low-Level Jets during the 1900–2015 Period. Atmosphere 2021, 12, 1120. https://doi.org/10.3390/atmos12091120
Cerón WL, Kayano MT, Andreoli RV, Avila-Diaz A, de Souza IP, Souza RAF. Pacific and Atlantic Multidecadal Variability Relations with the Choco and Caribbean Low-Level Jets during the 1900–2015 Period. Atmosphere. 2021; 12(9):1120. https://doi.org/10.3390/atmos12091120
Chicago/Turabian StyleCerón, Wilmar L., Mary T. Kayano, Rita V. Andreoli, Alvaro Avila-Diaz, Itamara Parente de Souza, and Rodrigo A. F. Souza. 2021. "Pacific and Atlantic Multidecadal Variability Relations with the Choco and Caribbean Low-Level Jets during the 1900–2015 Period" Atmosphere 12, no. 9: 1120. https://doi.org/10.3390/atmos12091120
APA StyleCerón, W. L., Kayano, M. T., Andreoli, R. V., Avila-Diaz, A., de Souza, I. P., & Souza, R. A. F. (2021). Pacific and Atlantic Multidecadal Variability Relations with the Choco and Caribbean Low-Level Jets during the 1900–2015 Period. Atmosphere, 12(9), 1120. https://doi.org/10.3390/atmos12091120