Atmospheric NO2 Distribution Characteristics and Influencing Factors in Yangtze River Economic Belt: Analysis of the NO2 Product of TROPOMI/Sentinel-5P
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data and Data Preprocessing
2.2. Methodology
3. Results
3.1. General Characteristics of the NO2 VCD in the YREB
3.2. Spatial-Temporal Distribution Characteristics of the NO2 VCD in the YREB
3.3. Influencing Factor Analysis of NO2 VCD Distribution in YREB
3.3.1. Factor Detector Analysis
3.3.2. Interaction Detector Analysis
3.3.3. Risk Detector Analysis
4. Discussion
4.1. Comparison of Spatial-Temporal Changes of NO2 VCD in Different Administrative Units of the YREB
4.2. Regional Difference and Seasonal Difference of Influencing Factors on NO2 VCD
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Goldberg, D.L.; Lamsal, L.N.; Loughner, C.P.; Swartz, W.H.; Lu, Z.; Streets, D.G. A High-Resolution and Observationally Constrained OMI NO2 Satellite Retrieval. Atmos. Chem. Phys. 2017, 17, 11403–11421. [Google Scholar] [CrossRef] [Green Version]
- Crouse, D.L.; Peters, P.A.; Hystad, P.; Brook, J.R.; van Donkelaar, A.; Martin, R.V.; Villeneuve, P.J.; Jerrett, M.; Goldberg, M.S.; Arden Pope III, C.; et al. Ambient PM2.5, O3, and NO2 Exposures and Associations with Mortality over 16 Years of Follow-Up in the Canadian Census Health and Environment Cohort (CanCHEC). Environ. Health Perspect. 2015, 123, 1180–1186. [Google Scholar] [CrossRef] [Green Version]
- Hvidtfeldt, U.A.; Sørensen, M.; Geels, C.; Ketzel, M.; Khan, J.; Tjønneland, A.; Overvad, K.; Brandt, J.; Raaschou-Nielsen, O. Long-Term Residential Exposure to PM2.5, PM10, Black Carbon, NO2, and Ozone and Mortality in a Danish Cohort. Environ. Int. 2019, 123, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Strak, M.; Janssen, N.; Beelen, R.; Schmitz, O.; Vaartjes, I.; Karssenberg, D.; Van Den Brink, C.; Bots, M.L.; Dijst, M.; Brunekreef, B.; et al. Long-Term Exposure to Particulate Matter, NO2 and the Oxidative Potential of Particulates and Diabetes Prevalence in a Large National Health Survey. Environ. Int. 2017, 108, 228–236. [Google Scholar] [CrossRef]
- Roberts, S.; Arseneault, L.; Barratt, B.; Beevers, S.; Danese, A.; Odgers, C.L.; Moffitt, T.E.; Reuben, A.; Kelly, F.J.; Fisher, H.L. Exploration of NO2 and PM2.5 Air Pollution and Mental Health Problems Using High-Resolution Data in London-Based Children from a UK Longitudinal Cohort Study. Psychiatry Res. 2019, 272, 8–17. [Google Scholar] [CrossRef]
- Adame, J.A.; Gutierrez-alvarez, I.; Bolivar, J.P.; Yela, M. Ground-Based and OMI-TROPOMI NO2 Measurements at El Arenosillo Observatory: Unexpected Upward Trends. Environ. Pollut. 2020, 264, 114771. [Google Scholar] [CrossRef] [PubMed]
- Beirle, S.; Platt, U.; Wenig, M.; Wagner, T. Weekly Cycle of NO2 by GOME Measurements: A Signature of Anthropogenic Sources. Atmos. Chem. Phys. 2003, 3, 2225–2232. [Google Scholar] [CrossRef] [Green Version]
- Beirle, S.; Boersma, K.F.; Platt, U.; Lawrence, M.G.; Wagner, T. Megacity Emissions and Lifetimes of Nitrogen Oxides Probed from Space. Science 2011, 333, 1737. [Google Scholar] [CrossRef]
- Shah, V.; Jacob, D.J.; Li, K.; Silvern, R.F.; Zhai, S.; Liu, M.; Lin, J.; Zhang, Q. Effect of Changing NOx Lifetime on the Seasonality and Long-Term Trends of Satellite-Observed Tropospheric NO2 Columns over China. Atmos. Chem. Phys. 2020, 20, 1483–1495. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, D.L.; Anenberg, S.C.; Griffin, D.; McLinden, C.A.; Lu, Z.; Streets, D.G. Disentangling the Impact of the COVID-19 Lockdowns on Urban NO2 From Natural Variability. Geophys. Res. Lett. 2020, 47, e2020GL089269. [Google Scholar] [CrossRef]
- Liu, F.; Beirle, S.; Zhang, Q.; Van Der A, R.J.; Zheng, B.; Tong, D.; He, K. NOx Emission Trends over Chinese Cities Estimated from OMI Observations during 2005 to 2015. Atmos. Chem. Phys. 2017, 17, 9261–9275. [Google Scholar] [CrossRef] [Green Version]
- Zyrichidou, I.; Κoukouli, M.E.; Balis, D.; Markakis, K.; Poupkou, A.; Katragkou, E.; Kioutsioukis, I.; Melas, D.; Boersma, K.F.; van Roozendael, M. Identification of Surface NOx Emission Sources on a Regional Scale Using OMI NO2. Atmos. Environ. 2015, 101, 82–93. [Google Scholar] [CrossRef]
- De Hoogh, K.; Saucy, A.; Shtein, A.; Schwartz, J.; West, E.A.; Strassmann, A.; Puhan, M.; Roösli, M.; Stafoggia, M.; Kloog, I. Predicting Fine-Scale Daily NO2 for 2005–2016 Incorporating OMI Satellite Data Across Switzerland. Environ. Sci. Technol. 2019, 53, 10279–10287. [Google Scholar] [CrossRef]
- Liang, P.; Zhu, T.; Fang, Y.; Li, Y.; Han, Y.; Wu, Y.; Hu, M.; Wang, J. The Role of Meteorological Conditions and Pollution Control Strategies in Reducing Air Pollution in Beijing during APEC 2014 and Victory Parade 2015. Atmos. Chem. Phys. 2017, 17, 13921–13940. [Google Scholar] [CrossRef] [Green Version]
- De La Cruz, A.R.H.; Dionisio Calderon, E.R.; França, B.B.; Réquia, W.J.; Gioda, A. Evaluation of the Impact of the Rio 2016 Olympic Games on Air Quality in the City of Rio de Janeiro, Brazil. Atmos. Environ. 2019, 203, 206–215. [Google Scholar] [CrossRef]
- Chu, B.; Zhang, S.; Liu, J.; Ma, Q.; He, H. Significant Concurrent Decrease in PM2.5 and NO2 Concentrations in China during COVID-19 Epidemic. J. Environ. Sci. 2021, 99, 346–353. [Google Scholar] [CrossRef]
- Bechle, M.J.; Millet, D.B.; Marshall, J.D. National Spatiotemporal Exposure Surface for NO2: Monthly Scaling of a Satellite-Derived Land-Use Regression, 2000–2010. Environ. Sci. Technol. 2015, 49, 12297–12305. [Google Scholar] [CrossRef]
- Liu, C.; Henderson, B.H.; Wang, D.; Yang, X.; Peng, Z. A Land Use Regression Application into Assessing Spatial Variation of Intra- Urban Fine Particulate Matter (PM2.5) and Nitrogen Dioxide (NO2) Concentrations in City of Shanghai, China. Sci. Total Environ. 2016, 565, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Gu, J.; Chen, L.; Yu, C.; Li, S.; Tao, J.; Fan, M.; Xiong, X.; Wang, Z.; Shang, H.; Su, L. Ground-Level NO2 Concentrations over China Inferred from the Satellite OMI and CMAQ Model Simulations. Remote Sens. 2017, 9, 519. [Google Scholar] [CrossRef] [Green Version]
- Zhan, Y.; Luo, Y.; Deng, X.; Zhang, K.; Zhang, M.; Grieneisen, M.L.; Di, B. Satellite-Based Estimates of Daily NO2 Exposure in China Using Hybrid Random Forest and Spatiotemporal Kriging Model. Environ. Sci. Technol. 2018, 52, 4180–4189. [Google Scholar] [CrossRef] [PubMed]
- Qin, K.; Rao, L.; Xu, J.; Bai, Y.; Zou, J.; Hao, N.; Li, S.; Yu, C. Estimating Ground Level NO2 Concentrations over Central-Eastern China Using a Satellite-Based Geographically and Temporally Weighted Regression Model. Remote Sens. 2017, 9, 950. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.L.; Khorsandi, E.; Liu, S.; Baier, F.; Valks, P. Estimation of Surface NO2 Concentrations over Germany from TROPOMI Satellite Observations Using a Machine Learning Method. Remote Sens. 2021, 13, 969. [Google Scholar] [CrossRef]
- Jamali, S.; Klingmyr, D.; Tagesson, T. Global-Scale Patterns and Trends in Tropospheric NO2 Concentrations, 2005–2018. Remote Sens. 2020, 12, 3526. [Google Scholar] [CrossRef]
- Ma, C.; Ju, T.; Wang, Q.; Li, F.; Zhang, Y.; Zhang, G. Spatiotemporal Variations of Tropospheric NO2 in Lanzhou for the Period 2009–2018 Based on Satellite Remote Sensing. Atmos. Pollut. Res. 2021, 12, 206–216. [Google Scholar] [CrossRef]
- Zheng, Z.; Yang, Z.; Wu, Z.; Marinello, F. Spatial Variation of NO2 and Its Impact Factors in China: An Application of Sentinel-5P Products. Remote Sens. 2019, 11, 1939. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Brunner, D.; Hueglin, C.; Henne, S.; Staehelin, J. Changes in OMI Tropospheric NO2 Columns over Europe from 2004 to 2009 and the Influence of Meteorological Variability. Atmos. Environ. 2012, 46, 482–495. [Google Scholar] [CrossRef]
- Veefkind, J.P.; Aben, I.; Mcmullan, K.; Förster, H.; De Vries, J.; Otter, G.; Claas, J.; Eskes, H.J.; De Haan, J.F.; Kleipool, Q.; et al. TROPOMI on the ESA Sentinel-5 Precursor: A GMES Mission for Global Observations of the Atmospheric Composition for Climate, Air Quality and Ozone Layer Applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- Zhao, X.; Griffin, D.; Fioletov, V.; McLinden, C.; Cede, A.; Tiefengraber, M.; Müller, M.; Bognar, K.; Strong, K.; Boersma, F.; et al. Assessment of the Quality of TROPOMI High-Spatial-Resolution NO2 Data Products in the Greater Toronto Area. Atmos. Meas. Tech. 2020, 13, 2131–2159. [Google Scholar] [CrossRef]
- Tack, F.; Merlaud, A.; Iordache, M.; Pinardi, G.; Dimitropoulou, E.; Eskes, H.; Bomans, B.; Veefkind, P.; Roozendael, M. Van Assessment of the TROPOMI Tropospheric NO2 Product Based on Airborne APEX Observations. Atmos. Meas. Tech. 2021, 14, 615–646. [Google Scholar] [CrossRef]
- Judd, L.M.; Al-saadi, J.A.; Szykman, J.J.; Valin, L.C.; Janz, S.J.; Matthew, G.; Eskes, H.J.; Veefkind, J.P.; Cede, A.; Mueller, M.; et al. Evaluating Sentinel-5P TROPOMI Tropospheric NO2 Column Densities with Airborne and Pandora Spectrometers near New York City and Long Island Sound. Atmos. Meas. Tech. 2020, 13, 6113–6140. [Google Scholar] [CrossRef] [PubMed]
- van Geffen, J.; Boersma, K.F.; Eskes, H.; Sneep, M.; ter Linden, M.; Zara, M.; Veefkind, J.P. S5P TROPOMI NO2 Slant Column Retrieval: Method, Stability, Uncertainties and Comparisons with OMI. Atmos. Meas. Tech. 2020, 13, 1315–1335. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Zhang, T.; Yi, G.; He, D.; Zhou, X.; Li, J.; Bie, X.; Miao, J. Dynamic Changes of Ndvi in the Growing Season of the Tibetan Plateau during the Past 17 Years and Its Response to Climate Change. Int. J. Environ. Res. Public Health 2019, 16, 3452. [Google Scholar] [CrossRef] [Green Version]
- Abdi, H. Coefficient of variation. Encycl. Res. Des. 2010, 1, 167–171. [Google Scholar]
- Shi, Y.; Matsunaga, T.; Yamaguchi, Y.; Li, Z.; Gu, X.; Chen, X. Long-Term Trends and Spatial Patterns of Satellite-Retrieved PM2.5 Concentrations in South and Southeast Asia from 1999 to 2014. Sci. Total Environ. 2018, 615, 177–186. [Google Scholar] [CrossRef] [PubMed]
- Ord, J.K.; Getis, A. Local Spatial Autocorrelation Statistics: Distributional Issues and an Application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Yan, D.; Lei, Y.; Shi, Y.; Zhu, Q.; Li, L.; Zhang, Z. Evolution of the Spatiotemporal Pattern of PM2.5 Concentrations in China—A Case Study from the Beijing-Tianjin-Hebei Region. Atmos. Environ. 2018, 183, 225–233. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Li, X.; Christakos, G.; Liao, Y.; Zhang, T.; Gu, X.; Zheng, X. Geographical Detectors-Based Health Risk Assessment and Its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Chen, T.; Xia, J.; Zou, L.; Hong, S. Quantifying the Influences of Natural Factors and Human Activities on NDVI Changes in the Hanjiang River Basin, China. Remote Sens. 2020, 12, 3780. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhan, Y.; Wang, B.; Li, Z.; Qin, Y.; Zhang, K. Spatiotemporally Mapping of the Relationship between NO2 Pollution and Urbanization for a Megacity in Southwest China during 2005–2016. Chemosphere 2019, 220, 155–162. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, J.; Li, X.; Ren, D.; Zhu, J. Geographical Detector-Based Risk Assessment of the Under-Five Mortality in the 2008 Wenchuan Earthquake, China. PLoS ONE 2011, 6, e21427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An Optimal Parameters-Based Geographical Detector Model Enhances Geographic Characteristics of Explanatory Variables for Spatial Heterogeneity Analysis: Cases with Different Types of Spatial Data. GIScience Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Huang, X.; Shao, T.; Zhao, J.; Cao, J.; Yue, D.; Lv, X. Spatial-temporal distribution of air quality and its influencing factors in the Yangtze River economic belt. China Environ. Sci. 2020, 40, 874–884. (In Chinese) [Google Scholar]
- Tao, J.; Fan, M.; Gu, J.; Chen, L. Satellite observations of the return-to-work over China during the period of COVID-19. J. Remote. Sens. 2020, 24, 824–836. (In Chinese) [Google Scholar]
- Wang, Y.; Du, H.; Xu, Y.; Lu, D.; Wang, X.; Guo, Z. Temporal and Spatial Variation Relationship and Influence Factors on Surface Urban Heat Island and Ozone Pollution in the Yangtze River Delta, China. Sci. Total Environ. 2018, 631–632, 921–933. [Google Scholar] [CrossRef]
- Geng, F.; Zhang, Q.; Tie, X.; Huang, M.; Ma, X.; Deng, Z.; Yu, Q.; Quan, J.; Zhao, C. Aircraft Measurements of O3, NOx, CO, VOCs, and SO2 in the Yangtze River Delta Region. Atmos. Environ. 2009, 43, 584–593. [Google Scholar] [CrossRef]
- Xu, J.; Huang, X.; Wang, N.; Li, Y.; Ding, A. Understanding Ozone Pollution in the Yangtze River Delta of Eastern China from the Perspective of Diurnal Cycles. Sci. Total Environ. 2021, 752, 141928. [Google Scholar] [CrossRef] [PubMed]
- An, J.; Shi, Y.; Wang, J.; Zhu, B. Temporal Variations of O3 and NOx in the Urban Background Atmosphere of Nanjing, East China. Arch. Environ. Contam. Toxicol. 2016, 71, 224–234. [Google Scholar] [CrossRef] [PubMed]
Abbreviation | Regional Differences | Seasonal Differences | ||||||
---|---|---|---|---|---|---|---|---|
YREB | East | Center | West | Winter | Spring | Summer | Autumn | |
NTL | 0.51 | 0.53 | 0.50 | 0.39 | 0.49 | 0.45 | 0.51 | 0.49 |
CO2 | 0.45 | 0.48 | 0.31 | 0.28 | 0.40 | 0.45 | 0.44 | 0.45 |
NDVI | −0.16 | −0.35 | −0.22 | −0.04 | −0.14 | −0.04 | −0.15 | −0.18 |
DEM | −0.64 | −0.57 | −0.59 | −0.44 | −0.68 | −0.54 | −0.56 | −0.60 |
TCO3 | 0.50 | 0.73 | 0.48 | 0.17 | 0.29 | 0.44 | 0.57 | 0.51 |
TCC | 0.26 | −0.27 | −0.45 | 0.34 | 0.35 | 0.15 | −0.40 | −0.19 |
T2m | 0.23 | −0.19 | −0.16 | 0.29 | 0.23 | 0.22 | 0.27 | 0.23 |
TPrec | −0.11 | −0.74 | −0.32 | −0.03 | 0.06 | 0.06 | −0.12 | −0.19 |
U10 | −0.36 | −0.60 | −0.30 | −0.15 | −0.28 | −0.31 | −0.42 | −0.44 |
V10 | −0.20 | 0.17 | 0.06 | −0.40 | −0.24 | −0.18 | −0.11 | 0.17 |
BLH | 0.12 | 0.33 | 0.14 | 0.06 | 0.13 | −0.13 | 0.13 | 0.20 |
RH_875 | −0.15 | −0.72 | −0.57 | −0.11 | −0.16 | −0.24 | −0.15 | −0.34 |
WS10 | 0.43 | 0.59 | 0.56 | 0.04 | 0.23 | 0.30 | 0.45 | 0.38 |
SNSR | −0.24 | 0.54 | 0.41 | −0.27 | −0.25 | −0.20 | −0.17 | −0.25 |
SP | 0.64 | 0.69 | 0.61 | 0.41 | 0.70 | 0.53 | 0.54 | 0.59 |
SSRD | −0.35 | 0.61 | 0.43 | −0.38 | −0.35 | −0.32 | −0.32 | −0.31 |
STRD | 0.19 | −0.61 | −0.20 | 0.27 | 0.18 | 0.18 | 0.24 | 0.20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Yi, G.; Zhou, X.; Zhang, T.; Lan, Y.; Yu, D.; Wen, B.; Hu, J. Atmospheric NO2 Distribution Characteristics and Influencing Factors in Yangtze River Economic Belt: Analysis of the NO2 Product of TROPOMI/Sentinel-5P. Atmosphere 2021, 12, 1142. https://doi.org/10.3390/atmos12091142
Liu X, Yi G, Zhou X, Zhang T, Lan Y, Yu D, Wen B, Hu J. Atmospheric NO2 Distribution Characteristics and Influencing Factors in Yangtze River Economic Belt: Analysis of the NO2 Product of TROPOMI/Sentinel-5P. Atmosphere. 2021; 12(9):1142. https://doi.org/10.3390/atmos12091142
Chicago/Turabian StyleLiu, Xian, Guihua Yi, Xiaobing Zhou, Tingbin Zhang, Yan Lan, Daijun Yu, Bo Wen, and Jiao Hu. 2021. "Atmospheric NO2 Distribution Characteristics and Influencing Factors in Yangtze River Economic Belt: Analysis of the NO2 Product of TROPOMI/Sentinel-5P" Atmosphere 12, no. 9: 1142. https://doi.org/10.3390/atmos12091142
APA StyleLiu, X., Yi, G., Zhou, X., Zhang, T., Lan, Y., Yu, D., Wen, B., & Hu, J. (2021). Atmospheric NO2 Distribution Characteristics and Influencing Factors in Yangtze River Economic Belt: Analysis of the NO2 Product of TROPOMI/Sentinel-5P. Atmosphere, 12(9), 1142. https://doi.org/10.3390/atmos12091142