Concurrent Changepoints in Greenland Ice Core δ18O Records and the North Atlantic Oscillation over the Past Millennium
Abstract
:1. Introduction
2. Materials and Methods
- Calculate the probability of the data given the model between any two time points, P(i,j). This represents all possible climate regimes (in terms of timing) in the data set;
- Using the probabilistic calculations from step (1) as building blocks, recursively piece together these segments, adding one changepoint at a time. Specifically, if we define Pk(j) to be the probability that the first j data points contain k changepoints, then
- Using Bayes’ rule, sample from the posterior distribution on the number and location of the changepoints, as well as the parameters of the model in each segment.
3. Results and Discussion
3.1. Common Changepoint in Ice Core δ18O and Atmospheric Circulation in the 1930s
3.2. Common Changepoints in Ice Core δ18O and the NAO over the Past Millennium
4. Summary
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Delhasse, A.; Fettweis, X.; Kittel, C.; Amory, C.; Agosta, C. Brief communication: Impact of the recent atmospheric circulation change in summer on the future surface mass balance of the Greenland Ice Sheet. Cryosphere 2018, 12, 3409–3418. [Google Scholar] [CrossRef] [Green Version]
- Hanna, E.; Jones, J.M.; Cappelen, J.; Mernild, S.H.; Wood, L.; Steffen, K.; Huybrechts, P. The influence of North Atlantic atmospheric and oceanic forcing effects on 1900–2010 Greenland summer climate and ice melt/runoff. Int. J. Climatol. 2013, 33, 862–880. [Google Scholar] [CrossRef]
- Ballinger, T.J.; Hanna, E.; Hall, R.J.; Carr, J.R.; Brasher, S.; Osterberg, E.C.; Cappelen, J.; Tedesco, M.; Ding, Q.; Mernild, S.H. The role of blocking circulation and emerging open water feedbacks on Greenland cold-season air temperature variability over the last century. Int. J. Climatol. 2021, 41, E2778–E2800. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Kushnir, Y.; Ottersen, G.; Visbeck, M. An Overview of the North Atlantic Oscillation. In The North Atlantic Oscillation: Climatic Significance and Environmental Impact; American Geophysical Union: Washington, DC, USA, 2003; pp. 1–35. [Google Scholar]
- Wanner, H.; Brönnimann, S.; Casty, C.; Gyalistras, D.; Luterbacher, J.; Schmutz, C.; Stephenson, D.B.; Xoplaki, E. North Atlantic Oscillation—Concepts And Studies. Surv. Geophys. 2001, 22, 321–381. [Google Scholar] [CrossRef]
- Tedesco, M.; Fettweis, X. Unprecedented atmospheric conditions (1948–2019) drive the 2019 exceptional melting season over the Greenland ice sheet. Cryosphere 2020, 14, 1209–1223. [Google Scholar] [CrossRef] [Green Version]
- Hahn, L.C.; Storelvmo, T.; Hofer, S.; Parfitt, R.; Ummenhofer, C.C. Importance of Orography for Greenland Cloud and Melt Response to Atmospheric Blocking. J. Clim. 2020, 33, 4187–4206. [Google Scholar] [CrossRef] [Green Version]
- Bevis, M.; Harig, C.; Khan, S.A.; Brown, A.; Simons, F.J.; Willis, M.; Fettweis, X.; van den Broeke, M.R.; Madsen, F.B.; Kendrick, E.; et al. Accelerating changes in ice mass within Greenland, and the ice sheet’s sensitivity to atmospheric forcing. Proc. Natl. Acad. Sci. USA 2019, 116, 1934–1939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnsen, S.J.; Clausen, H.B.; Dansgaard, W.; Fuhrer, K.; Gundestrup, N.; Hammer, C.U.; Iversen, P.; Jouzel, J.; Stauffer, B.; Steffensen, J.P. Irregular glacial interstadials recorded in a new Greenland ice core. Nature 1992, 359, 311–313. [Google Scholar] [CrossRef]
- Fischer, H.; Mieding, B. A 1000-year ice core record of interannual to multidecadal variations in atmospheric circulation over the North Atlantic. Clim. Dyn. 2005, 25, 65–74. [Google Scholar] [CrossRef] [Green Version]
- Vinther, B.M.; Jones, P.D.; Briffa, K.R.; Clausen, H.B.; Andersen, K.K.; Dahl-Jensen, D.; Johnsen, S.J. Climatic signals in multiple highly resolved stable isotope records from Greenland. Quat. Sci. Rev. 2010, 29, 522–538. [Google Scholar] [CrossRef]
- Steig, E.J. PALEOCLIMATOLOGY|Ice Cores. In Encyclopedia of Atmospheric Sciences; Holton, J.R., Ed.; Academic Press: Oxford, UK, 2003; pp. 1673–1680. [Google Scholar]
- Cappelen, J.; Laursen, E.; Jørgensen, P.; Kern-Hansen, C. DMI Monthly Climate Data Collection 1768–2010, Denmark, the Faroe Islands and Greenland; DMI Technical Report 11-05; DMI: Copenhagen, Denmark, 2011. [Google Scholar]
- Masson-Delmotte, V.; Kageyama, M.; Braconnot, P.; Charbit, S.; Krinner, G.; Ritz, C.; Guilyardi, E.; Jouzel, J.; Abe-Ouchi, A.; Crucifix, M.; et al. Past and future polar amplification of climate change: Climate model intercomparisons and ice-core constraints. Clim. Dyn. 2006, 26, 513–529. [Google Scholar] [CrossRef]
- Ortega, P.; Swingedouw, D.; Masson-Delmotte, V.; Risi, C.; Vinther, B.; Yiou, P.; Vautard, R.; Yoshimura, K. Characterizing atmospheric circulation signals in Greenland ice cores: Insights from a weather regime approach. Clim. Dyn. 2014, 43, 2585–2605. [Google Scholar] [CrossRef]
- Rimbu, N.; Lohmann, G. Decadal Variability in a Central Greenland High-Resolution Deuterium Isotope Record and Its Relationship to the Frequency of Daily Atmospheric Circulation Patterns from the North Atlantic Region. J. Clim. 2010, 23, 4608–4618. [Google Scholar] [CrossRef] [Green Version]
- Rimbu, N.; Lohmann, G. Winter and summer blocking variability in the North Atlantic region—evidence from long-term observational and proxy data from southwestern Greenland. Clim. Past 2011, 7, 543–555. [Google Scholar] [CrossRef] [Green Version]
- Thomas, E.R.; Wolff, E.W.; Mulvaney, R.; Johnsen, S.J.; Steffensen, J.P.; Arrowsmith, C. Anatomy of a Dansgaard-Oeschger warming transition: High-resolution analysis of the North Greenland Ice Core Project ice core. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Steffensen, J.P.; Andersen, K.K.; Bigler, M.; Clausen, H.B.; Dahl-Jensen, D.; Fischer, H.; Goto-Azuma, K.; Hansson, M.; Johnsen, S.J.; Jouzel, J.; et al. High-Resolution Greenland Ice Core Data Show Abrupt Climate Change Happens in Few Years. Science 2008, 321, 680–684. [Google Scholar] [CrossRef] [Green Version]
- Mosley-Thompson, E.; Readinger, C.R.; Craigmile, P.; Thompson, L.G.; Calder, C.A. Regional sensitivity of Greenland precipitation to NAO variability. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Masson-Delmotte, V.; Schulz, M.; Abe-Ouchi, A.; Beer, J.; Ganopolski, A.; González Rouco, J.F.; Jansen, E.; Lambeck, K.; Luterbacher, J.; Naish, T.; et al. Information from Paleoclimate Archives. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1552. [Google Scholar]
- Charles, C.D.; Rind, D.; Jouzel, J.; Koster, R.D.; Fairbanks, R.G. Glacial-Interglacial Changes in Moisture Sources for Greenland: Influences on the Ice Core Record of Climate. Science 1994, 263, 508–511. [Google Scholar] [CrossRef]
- Konecky, B.L.; McKay, N.P.; Churakova, O.V.; Comas-Bru, L.; Dassié, E.P.; DeLong, K.L.; Falster, G.M.; Fischer, M.J.; Jones, M.D.; Jonkers, L.; et al. The Iso2k Database: A global compilation of Paleo-δ18O and δ2H records to aid understanding of Common Era climate. Earth Syst. Sci. Data. 2020, 12, 2261–2288. [Google Scholar] [CrossRef]
- McKay, N.; Konecky, B. Iso2k Database Global Common Era Paleo-δ18O and δ2H Records. 2020. Available online: https://www.ncei.noaa.gov/metadata/geoportal/rest/metadata/item/noaa-recon-29593/html (accessed on 4 June 2021).
- Jones, P.D.; Jonsson, T.; Wheeler, D. Extension to the North Atlantic oscillation using early instrumental pressure observations from Gibraltar and south-west Iceland. Int. J. Climatol. 1997, 17, 1433–1450. [Google Scholar] [CrossRef]
- Lehner, F.; Raible, C.C.; Stocker, T.F. Testing the robustness of a precipitation proxy-based North Atlantic Oscillation reconstruction. Quat. Sci. Rev. 2012, 45, 85–94. [Google Scholar] [CrossRef]
- Ortega, P.; Lehner, F.; Swingedouw, D.; Masson-Delmotte, V.; Raible, C.C.; Casado, M.; Yiou, P. A model-tested North Atlantic Oscillation reconstruction for the past millennium. Nature 2015, 523, 71–74. [Google Scholar] [CrossRef]
- Cook, E.R.; Kushnir, Y.; Smerdon, J.E.; Williams, A.P.; Anchukaitis, K.J.; Wahl, E.R. A Euro-Mediterranean tree-ring reconstruction of the winter NAO index since 910 C.E. Clim. Dyn. 2019, 53, 1567–1580. [Google Scholar] [CrossRef]
- Hanna, E.; Cropper, T.E.; Hall, R.J.; Cappelen, J. Greenland Blocking Index 1851–2015: A regional climate change signal. Int. J. Climatol. 2016, 36, 4847–4861. [Google Scholar] [CrossRef] [Green Version]
- Ruggieri, E. A pruned recursive solution to the multiple change point problem. Comput. Stat. 2018, 33, 1017–1045. [Google Scholar] [CrossRef]
- Ruggieri, E.; Antonellis, M. An exact approach to Bayesian sequential change point detection. Comput. Stat. Data Anal. 2016, 97, 71–86. [Google Scholar] [CrossRef] [Green Version]
- Ruggieri, E. A Bayesian approach to detecting change points in climatic records. Int. J. Climatol. 2013, 33, 520–528. [Google Scholar] [CrossRef]
- Scott, A.J.; Knott, M. A Cluster Analysis Method for Grouping Means in the Analysis of Variance. Biometrics 1974, 30, 507–512. [Google Scholar] [CrossRef] [Green Version]
- Schwing, F.B.; Jiang, J.; Mendelssohn, R. Coherency of multi-scale abrupt changes between the NAO, NPI, and PDO. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef] [Green Version]
- Lund, R.; Reeves, J. Detection of Undocumented Changepoints: A Revision of the Two-Phase Regression Model. J. Clim. 2002, 15, 2547–2554. [Google Scholar] [CrossRef]
- Robbins, M.W.; Lund, R.B.; Gallagher, C.M.; Lu, Q. Changepoints in the North Atlantic Tropical Cyclone Record. J. Am. Stat. Assoc. 2011, 106, 89–99. [Google Scholar] [CrossRef]
- Tomé, A.R.; Miranda, P.M.A. Piecewise linear fitting and trend changing points of climate parameters. Geophys. Res. Lett. 2004, 31, 19100. [Google Scholar] [CrossRef] [Green Version]
- Gregow, H.; Laaksonen, A.; Alper, M.E. Increasing large scale windstorm damage in Western, Central and Northern European forests, 1951–2010. Sci. Rep. 2017, 7, 46397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Topál, D.; Matyasovszky, I.; Kern, Z.; Hatvani, I.G. Detecting breakpoints in artificially modified- and real-life time series using three state-of-the-art methods. Open Geosci. 2016, 8, 78. [Google Scholar] [CrossRef] [Green Version]
- Barry, D.; Hartigan, J.A. A Bayesian Analysis for Change Point Problems. J. Am. Stat. Assoc. 1993, 88, 309–319. [Google Scholar]
- Ruggieri, E.; Yu, M.; Qiang, R. Change Point Models: What are They and Why Do We Need Them? Undergrad. Math. Its Appl. 2020, 41, 61–80. [Google Scholar]
- Chen, Q.-s.; Bromwich, D.H.; Bai, L. Precipitation over Greenland Retrieved by a Dynamic Method and Its Relation to Cyclonic Activity. J. Clim. 1997, 10, 839–870. [Google Scholar] [CrossRef]
- Sodemann, H.; Schwierz, C.; Wernli, H. Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Rogers, J.C. Atmospheric Circulation Changes Associated with the Warming over the Northern North Atlantic in the 1920s. J. Appl. Meteorol. Climatol. 1985, 24, 1303–1310. [Google Scholar] [CrossRef]
- Hegerl, G.C.; Brönnimann, S.; Schurer, A.; Cowan, T. The early 20th century warming: Anomalies, causes, and consequences. WIREs Clim. Chang. 2018, 9, e522. [Google Scholar] [CrossRef] [Green Version]
- Svendsen, L.; Keenlyside, N.; Bethke, I.; Gao, Y.; Omrani, N.-E. Pacific contribution to the early twentieth-century warming in the Arctic. Nat. Clim. Chang. 2018, 8, 793–797. [Google Scholar] [CrossRef]
- Tokinaga, H.; Xie, S.-P.; Mukougawa, H. Early 20th-century Arctic warming intensified by Pacific and Atlantic multidecadal variability. Proc. Natl. Acad. Sci. USA 2017, 114, 6227–6232. [Google Scholar] [CrossRef] [Green Version]
- Hanna, E.; Mernild, S.H.; Cappelen, J.; Steffen, K. Recent warming in Greenland in a long-term instrumental (1881–2012) climatic context: I. Evaluation of surface air temperature records. Environ. Res. Lett. 2012, 7, 045404. [Google Scholar] [CrossRef]
- Rimbu, N.; Lohmann, G.; Werner, M.; Ionita, M. Links between central Greenland stable isotopes, blocking and extreme climate variability over Europe at decadal to multidecadal time scales. Clim. Dyn. 2017, 49, 649–663. [Google Scholar] [CrossRef] [Green Version]
- Anchukaitis, K.J.; Cook, E.R.; Cook, B.I.; Pearl, J.; D’Arrigo, R.; Wilson, R. Coupled Modes of North Atlantic Ocean-Atmosphere Variability and the Onset of the Little Ice Age. Geophys. Res. Lett. 2019, 46, 12417–12426. [Google Scholar] [CrossRef] [Green Version]
- Franke, J.G.; Werner, J.P.; Donner, R.V. Reconstructing Late Holocene North Atlantic atmospheric circulation changes using functional paleoclimate networks. Clim. Past 2017, 13, 1593–1608. [Google Scholar] [CrossRef] [Green Version]
- Rimbu, N.; Ionita, M.; Lohmann, G. A Synoptic Scale Perspective on Greenland Ice Core δ18O Variability and Related Teleconnection Patterns. Atmosphere 2021, 12, 294. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hatvani, I.G.; Topál, D.; Ruggieri, E.; Kern, Z. Concurrent Changepoints in Greenland Ice Core δ18O Records and the North Atlantic Oscillation over the Past Millennium. Atmosphere 2022, 13, 93. https://doi.org/10.3390/atmos13010093
Hatvani IG, Topál D, Ruggieri E, Kern Z. Concurrent Changepoints in Greenland Ice Core δ18O Records and the North Atlantic Oscillation over the Past Millennium. Atmosphere. 2022; 13(1):93. https://doi.org/10.3390/atmos13010093
Chicago/Turabian StyleHatvani, István Gábor, Dániel Topál, Eric Ruggieri, and Zoltán Kern. 2022. "Concurrent Changepoints in Greenland Ice Core δ18O Records and the North Atlantic Oscillation over the Past Millennium" Atmosphere 13, no. 1: 93. https://doi.org/10.3390/atmos13010093
APA StyleHatvani, I. G., Topál, D., Ruggieri, E., & Kern, Z. (2022). Concurrent Changepoints in Greenland Ice Core δ18O Records and the North Atlantic Oscillation over the Past Millennium. Atmosphere, 13(1), 93. https://doi.org/10.3390/atmos13010093