Quantification of Urban Methane Emissions: A Combination of Stationary with Mobile Measurements
Abstract
:1. Introduction
2. Experimental Design
2.1. Stationary Measurements
2.2. Mobile Measurements
2.3. Data Preparation and Peak Analysis
2.4. Estimation of the Source Strength
- Condition 1: Data show stable to extremely stable stratification conditions of the boundary layer during the MM trip.
- Condition 2: The CH4 mixing ratios at MS21 and MS4.9 increase synchronously over the entire study area during the MM trip (detectable within the MM dataset).
- Assumption 1: The height of the stable boundary layer in Münster during the period under consideration is the same as at the DWD radiosonde in Essen at the time of the nearest ascent.
- Assumption 2: The increase in the CH4 mixing ratio occurs equally throughout the height of the stable boundary layer.
- Assumption 3: The CH4 source is located within the study area.
2.5. Statistical Evaluation and Software
3. Results and Discussion
3.1. Stationary Measurements
3.1.1. Background Mixing Ratios of CH4 at the Stations MS21 and MS4.9
3.1.2. Peaks at Station MS4.9
3.1.3. Stratification Stability
3.1.4. Wind Direction
3.2. Mobile Measurements (Point Sources and Emission Rates)
3.3. Methane Source Strength
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arias, P.A.; Bellouin, N.; Coppola, E.; Jones, R.G.; Krinner, G.; Marotzke, J.; Naik, V.; Palmer, M.D.; Plattner, G.-K.; Rogelj, J.; et al. Technical Summary. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 33–144. [Google Scholar] [CrossRef]
- Saunois, M.; Stavert, A.R.; Poulter, B.; Bousquet, P.; Canadell, J.G.; Jackson, R.B.; Raymond, P.A.; Dlugokencky, E.J.; Houweling, S.; Patra, P.K.; et al. The Global Methane Budget 2000–2017. Earth Syst. Sci. Data 2020, 12, 1561–1623. [Google Scholar] [CrossRef]
- Tarasova, O.; Vermeulen, A. Greenhouse Gas Concentrations in the Atmosphere (Global Atmosphere Watch, GAW). In United in Science 2020. A Multi-Organization High-Level Compilation of the Latest Climate Science Information; Luterbacher, J., Paterson, L., Solazzo, K., Castonguay, S., Eds.; World Meteorological Organization (WMO): Geneva, Switzerland, 2020; p. 4. [Google Scholar]
- Prather, M.J.; Holmes, C.D.; Hsu, J. Reactive greenhouse gas scenarios: Systematic exploration of uncertainties and the role of atmospheric chemistry. Geophys. Res. Lett. 2012, 39, 1–5. [Google Scholar] [CrossRef]
- Shindell, D.; Kuylenstierna, J.C.I.; Vignati, E.; van Dingenen, R.; Amann, M.; Klimont, Z.; Anenberg, S.C.; Muller, N.; Janssens-Maenhout, G.; Raes, F.; et al. Simultaneously mitigating near-term climate change and improving human health and food security. Science 2012, 335, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Nisbet, E.G.; Fisher, R.E.; Lowry, D.; France, J.L.; Allen, G.; Bakkaloglu, S.; Broderick, T.J.; Cain, M.; Coleman, M.; Fernandez, J.; et al. Methane Mitigation: Methods to Reduce Emissions, on the Path to the Paris Agreement. Rev. Geophys. 2020, 58, 1–51. [Google Scholar] [CrossRef]
- Ocko, I.B.; Sun, T.; Shindell, D.; Oppenheimer, M.; Hristof, A.; Pacala, S.W.; Mauzerall, D.L.; Xu, Y.; Hamburg, S.P. Acting rapidly to deploy readlily available methane mitigation measures by sector can immediately slow global warming. Environ. Res. Lett. 2021, 16, 054042. [Google Scholar] [CrossRef]
- Zazzeri, G.; Lowry, D.; Fisher, R.E.; France, J.L.; Lanoisellé, M.; Grimmond, C.S.B.; Nisbet, E.G. Evaluating methane inventories by isotopic analysis in the London region. Sci. Rep. 2017, 7, 4854. [Google Scholar] [CrossRef]
- Gioli, B.; Toscano, P.; Lugato, E.; Matese, A.; Miglietta, F.; Zaldei, A.; Vaccari, F.P. Methane and carbon dioxide fluxes and source partitioning in urban areas: The case study of Florence, Italy. Environ. Pollut. 2012, 164, 125–131. [Google Scholar] [CrossRef]
- Townsend-Small, A.; Tyler, S.C.; Pataki, D.E.; Xu, X.; Christensen, L.E. Isotopic measurements of atmospheric methane in Los Angeles, California, USA: Influence of “fugitive” fossil fuel emissions. J. Geophys. Res. 2012, 117, D07308. [Google Scholar] [CrossRef]
- Helfter, C.; Tremper, A.H.; Halios, C.H.; Kotthaus, S.; Bjorkegren, A.; Grimmond, C.S.B.; Barlow, J.F.; Nemitz, E. Spatial and temporal variability of urban fluxes of methane, carbon monoxide and carbon dioxide above London, UK. Atmos. Chem. Phys. 2016, 16, 10543–10557. [Google Scholar] [CrossRef] [Green Version]
- Alvarez, R.A.; Zavala-Araiza, D.; Lyon, D.R.; Allen, D.T.; Barkley, Z.R.; Brandt, A.R.; Davis, K.J.; Herndon, S.C.; Jacob, D.J.; Karion, A.; et al. Assessment of methane emissions from the U.S. oil and gas supply chain. Science 2018, 361, 186–188. [Google Scholar] [CrossRef]
- Saunois, M.; Bousquet, P.; Poulter, B.; Peregon, A.; Ciais, P.; Canadell, J.G.; Dlugokencky, E.J.; Etiope, G.; Bastviken, D.; Houweling, S.; et al. The global methane budget 2000–2012. Earth Syst. Sci. Data 2016, 8, 697–751. [Google Scholar] [CrossRef]
- Brandt, A.R.; Heath, G.A.; Kort, E.A.; O’Sullivan, F.; Pétron, G.; Jordaan, S.M.; Tans, P.; Wilcox, J.; Gopstein, A.M.; Arent, D.; et al. Energy and environment. Methane leaks from North American natural gas systems. Science 2014, 343, 733–735. [Google Scholar] [CrossRef] [PubMed]
- Pétron, G.; Karion, A.; Sweeney, C.; Miller, B.R.; Montzka, S.A.; Frost, G.J.; Trainer, M.; Tans, P.; Andrews, A.; Kofler, J.; et al. A new look at methane and nonmethane hydrocarbon emissions from oil and natural gas operations in the Colorado Denver-Julesburg Basin. J. Geophys. Res. 2014, 119, 6836–6852. [Google Scholar] [CrossRef]
- Karion, A.; Sweeney, C.; Pétron, G.; Frost, G.; Michael Hardesty, R.; Kofler, J.; Miller, B.R.; Newberger, T.; Wolter, S.; Banta, R.; et al. Methane emissions estimate from airborne measurements over a western United States natural gas field. Geophys. Res. Lett. 2013, 40, 4393–4397. [Google Scholar] [CrossRef]
- Nisbet, E.; Weiss, R. Atmospheric science. Top-down versus bottom-up. Science 2010, 328, 1241–1243. [Google Scholar] [CrossRef]
- Plant, G.; Kort, E.A.; Murray, L.T.; Maasakkers, J.D.; Aben, I. Evaluating urban methane emissions from space using TROPOMI methane and carbon monoxide observations. Remote Sens. Environ. 2022, 268, 112756. [Google Scholar] [CrossRef]
- Maazallahi, H.; Fernandez, J.M.; Menoud, M.; Zavala-Araiza, D.; Weller, Z.D.; Schwietzke, S.; von Fischer, J.C.; van der Denier Gon, H.; Röckmann, T. Methane mapping, emission quantification, and attribution in two European cities: Utrecht (NL) and Hamburg (DE). Atmos. Chem. Phys. 2020, 20, 14717–14740. [Google Scholar] [CrossRef]
- Defratyka, S.M.; Paris, J.-D.; Yver-Kwok, C.; Fernandez, J.M.; Korben, P.; Bousquet, P. Mapping urban methane sources in Paris, France. Environ. Sci. Technol. 2021, 55, 8583–8591. [Google Scholar] [CrossRef]
- Weller, Z.D.; Yang, D.K.; von Fischer, J.C. An open source algorithm to detect natural gas leaks from mobile methane survey data. PLoS ONE 2019, 14, e0212287. [Google Scholar] [CrossRef] [Green Version]
- von Fischer, J.C.; Cooley, D.; Chamberlain, S.; Gaylord, A.; Griebenow, C.J.; Hamburg, S.P.; Salo, J.; Schumacher, R.; Theobald, D.; Ham, J. Rapid, vehicle-based identification of location and magnitude of urban natural gas pipeline leaks. Environ. Sci. Technol. 2017, 51, 4091–4099. [Google Scholar] [CrossRef]
- Lamb, B.K.; Cambaliza, M.O.L.; Davis, K.J.; Edburg, S.L.; Ferrara, T.W.; Floerchinger, C.; Heimburger, A.M.F.; Herndon, S.; Lauvaux, T.; Lavoie, T.; et al. Direct and indirect measurements and modeling of methane emissions in Indianapolis, Indiana. Environ. Sci. Technol. 2016, 50, 8910–8917. [Google Scholar] [CrossRef] [PubMed]
- Bilanzierung des Energieeinsatzes und der CO2-Emissionen für die Jahre 1990–2019. Available online: https://www.stadt-muenster.de/fileadmin/user_upload/stadt-muenster/67_klima/pdf/Bericht-Klimabilanz_Stadt_Muenster_2019.pdf (accessed on 2 March 2021).
- Erzeugungsanlagen—Die Gas-und Dampfturbinen-Anlage (GuD). Available online: https://www.stadtwerke-muenster.de/unternehmen/energie/unser-angebot-fuer-sie/erzeugungsanlagen/gud.html (accessed on 5 October 2021).
- Erzeugungsanlagen-Blockheizkraftwerke. Available online: https://www.stadtwerke-muenster.de/unternehmen/energie/unser-angebot-fuer-sie/erzeugungsanlagen/bhkw.html (accessed on 31 August 2021).
- Mühlstein, J. Starthelfer mit Effizienzbonus. Ein Gasmotoren-Blockheizkraftwerk mit 3,9 MW Elektrischer Leistung Ermöglicht den Stadtwerken Münster, ihr 100-MW-GuD-Heizkraftwerk bei Netzausfall Wieder in Betrieb zu Nehmen; Energie & Management Verlagsgesellschaft mbH: Herrsching, Germany, 2009. [Google Scholar]
- Wagner, R.; Tenberg, B. Energetische Infrastruktur. In Masterplan 100% Klimaschutz für die Stadt Münster; Jung Stadtkonzepte Stadtplaner & Ingenieure Partnerschaftsgesellschaft: Cologne, Germany, 2017; p. 38. [Google Scholar]
- Versorgungsnetz Gas. Netzbeschreibung. Available online: https://www.stadtnetze-muenster.de/versorgungsnetze/versorgungsnetz-gas/ (accessed on 3 November 2021).
- Filz, K.; Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen (LANUV NRW), Recklinghausen, North Rhine-Westphalia, Germany; Kohler, F.K.; University of Münster, North Rhine-Westphalia, Germany. Personal communication, 2021.
- Koch, P.; Deutscher Wetterdienst (DWD), Essen, North Rhine-Westphalia, Germany; Kohler, F.K.; University of Münster, North Rhine-Westphalia, Germany. Personal communication, 2021.
- Wurzler, S.; Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen (LANUV NRW), Recklinghausen, North Rhine-Westphalia, Germany; Kohler, F.K.; University of Münster, North Rhine-Westphalia, Germany. Personal communication, 2021.
- Meyer, H.; Deventer, M.J.; Zhao, Y.; Klemm, O. CO2 emissions from cities: Direct flux measurements versus the indirect budget approach. Meteorol. Zeitschrift 2019, 28, 379–387. [Google Scholar] [CrossRef]
- Schaller, C.; Hofer, B.; Klemm, O. Greenhouse Gas Exchange of a NW German Peatland, 18 Years after Rewetting. J. Geophys. Res. Biogeosci. 2022, 127, e2020JG005960. [Google Scholar] [CrossRef]
- Detto, M.; Verfaillie, J.; Anderson, F.; Xu, L.; Baldocchi, D. Comparing laser-based open- and closed-path gas analyzers to measure methane fluxes using the eddy covariance method. Agric. For. Meteorol. 2011, 151, 1312–1324. [Google Scholar] [CrossRef]
- Klug, W. Method for determining atmospheric dispersion conditions from synoptic observations. Staub-Reinhalt. Luft 1969, 29, 143–147. [Google Scholar]
- Manier, G. Vergleich zwischen Ausbreitungsklassen und Temperaturgradienten. Meteorol. Rundsch. 1975, 28, 6–11. [Google Scholar]
- Pasquill, F. Atmospheric Diffusion: The Dispersion of Windborne Material from Industrial and Other Sources, 2nd ed.; Ellis Horwood: Chichester, UK, 1974. [Google Scholar]
- University of Wyoming. College of Engineering. Department of Atmospheric Science. Available online: http://weather.uwyo.edu/upperair/sounding.html (accessed on 25 August 2021).
- Stein, D. Grabenloser Leitungsbau, 1st ed.; Ernst & Sohn: Berlin, Germany, 2003. [Google Scholar]
- Peitzmeier, C.; Loschke, C.; Wiedenhaus, H.; Klemm, O. Real-world vehicle emissions as measured by in situ analysis of exhaust plumes. Environ. Sci. Pollut. Res. 2017, 24, 23279–23289. [Google Scholar] [CrossRef]
- Straßen: Straßenbau und-erhaltung. Available online: https://www.stadt-muenster.de/tiefbauamt/strassen/strassenbau-und-erhaltung#c49405 (accessed on 28 October 2021).
- Fahrmeir, L.; Heumann, C.; Künstler, R.; Pigeot, I.; Tutz, G. Statistik: Der Weg zur Datenanalyse, 8th ed.; Springer Spektrum: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: Abingdon, UK, 1988. [Google Scholar] [CrossRef]
- Chambers, J.M.; Cleveland, W.S.; Kleiner, B.; Tukey, P.A. Comparing data distributions. In Graphical Methods for Data Analysis, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 1983. [Google Scholar] [CrossRef]
- The R Project for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 18 October 2021).
- Environmental Systems Research Institute (ESRI). ArcGIS Desktop 10.6.1.; Environmental Systems Research Institute (ESRI): Redlands, CA, USA, 2018. [Google Scholar]
- Emeis, S. Examples for the determination of turbulent (sub-synoptic) fluxes with inverse methods. Meteorol. Z. 2008, 17, 3–11. [Google Scholar] [CrossRef]
- Zimnoch, M.; Godlowska, J.; Necki, J.M.; Rozanski, K. Assessing surface fluxes of CO2 and CH4 in urban environment: A reconnaissance study in Krakow, Southern Poland. Tellus B Chem. Phys. Meteorol. 2010, 62, 573–580. [Google Scholar] [CrossRef] [Green Version]
- Querino, C.A.S.; Smeets, C.J.P.P.; Vigano, I.; Holzinger, R.; Moura, V.; Gatti, L.V.; Martinewski, A.; Manzi, A.O.; de Araújo, A.C.; Röckmann, T. Methane flux, vertical gradient and mixing ratio measurements in a tropical forest. Atmos. Chem. Phys. 2011, 11, 7943–7953. [Google Scholar] [CrossRef]
- Tian, H.; Lu, C.; Ciais, P.; Michalak, A.M.; Canadell, J.G.; Saikawa, E.; Huntzinger, D.N.; Gurney, K.R.; Sitch, S.; Zhang, B.; et al. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature 2016, 531, 225–228. [Google Scholar] [CrossRef] [PubMed]
- Lammers, M.; Becker, T. Landwirtschaft im Münsterland. Daten—Fakten—Analysen, 2nd ed.; Landwirtschaftskammer Nordrhein-Westfalen: Münster, Germany, 2014. [Google Scholar]
- Baumgarten, C.; Bilharz, M.; Döring, U.; Eisold, A.; Friedrich, B.; Frische, T.; Gather, C.; Günther, D.; Große Wichtrup, W.; Hofmeier, K.; et al. Umwelt und Landwirtschaft. In Daten zur Umwelt|Ausgabe 2018; Umweltbundesamt: Dessau-Roßlau, Germany, 2018. [Google Scholar]
- NRW Umweltdaten vor Ort. Available online: https://www.uvo.nrw.de/ (accessed on 3 November 2021).
- Schulze Brock, K.; Stadtnetze Münster GmbH, Münster, North Rhine-Westphalia, Germany; Kohler, F.K.; University of Münster, North Rhine-Westphalia, Germany. Personal communication, 2020 and 2021.
- Sharan, M.; Gopalakrishnan, S.G. Mathematical modeling of diffusion and transport of pollutants in the atmospheric boundary layer. Pure Appl. Geophys. 2003, 160, 357–394. [Google Scholar] [CrossRef]
- Pawlak, W.; Fortuniak, K. Eddy covariance measurements of the net turbulent methane flux in the city centre—Results of 2-year campaign in Łódź, Poland. Atmos. Chem. Phys. 2016, 16, 8281–8294. [Google Scholar] [CrossRef] [Green Version]
- Filz, K.; Hoppe, D.; Laufhütte, T. Treibhausgas-Emissionsinventar Nordrhein-Westfalen 2019. LANUV-Fachbericht 117; Landesamt für Natur, Umwelt und Verbraucherschutz Nordrhein-Westfalen (LANUV NRW): Recklinghausen, Germany, 2021. [Google Scholar]
- Deutscher Verein des Gas-und Wasserfaches e. V. (DVGW). Technische Regel—Arbeitsblatt DVGW G 465-1 (A). Überprüfung von Gasrohrnetzen mit einem Betriebsdruck bis 16 Bar; DVGW: Bonn, Germany, 2019. [Google Scholar]
Stability Range | Class after Klug [36]/Manier [37] | Class after Pasquill [38] | Temperature Gradient dT/dz [K/100 m] | Total Share [%] | Share during Peaks at MS4.9 [%] |
---|---|---|---|---|---|
Extremely stable | G | 4.0 ≤ dT/dz | 17.8 | 7.1 | |
Very stable | I | F | 1.5 ≤ dT/dz < 4.0 | 10.0 | 7.3 |
Stable | II | E | −0.5 ≤ dT/dz < 1.5 | 21.0 | 26.6 |
Neutral | III/1 | D | −1.5 ≤ dT/dz < −0.5 | 18.5 | 23.2 |
Neutral | III/2 | C | −1.7 ≤ dT/dz < −1.5 | 3.5 | 4.9 |
Unstable | IV | B | −1.9 ≤ dT/dz < −1.7 | 3.8 | 4.6 |
Very unstable | V | A | dT/dz < −1.9 | 17.3 | 16.4 |
NA | 8.1 | 9.9 |
Münster | Birmingham | Anonymous City | Dallas | Pittsburgh | |
---|---|---|---|---|---|
Route length [km] | 30 | 589 | 916 | 1408 | 2466 |
Number of point sources * | 15 | 168 | 275 | 414 | 460 |
Point sources per km traveled [km−1] | 0.50 | 0.29 | 0.30 | 0.29 | 0.19 |
Share of small emission rates [%] ** | 57 | 95 | 91 | 94 | 92 |
Share of medium emission rates [%] ** | 36 | 4 | 9 | 5 | 7 |
Share of large emission rates [%] ** | 7 | 1 | 0 | 1 | 1 |
Emission rate per km traveled [g h−1 km−1] | 22.0 | 40.4 | 33.6 | 34.8 | 23.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kohler, F.K.; Schaller, C.; Klemm, O. Quantification of Urban Methane Emissions: A Combination of Stationary with Mobile Measurements. Atmosphere 2022, 13, 1596. https://doi.org/10.3390/atmos13101596
Kohler FK, Schaller C, Klemm O. Quantification of Urban Methane Emissions: A Combination of Stationary with Mobile Measurements. Atmosphere. 2022; 13(10):1596. https://doi.org/10.3390/atmos13101596
Chicago/Turabian StyleKohler, Florian Kurt, Carsten Schaller, and Otto Klemm. 2022. "Quantification of Urban Methane Emissions: A Combination of Stationary with Mobile Measurements" Atmosphere 13, no. 10: 1596. https://doi.org/10.3390/atmos13101596
APA StyleKohler, F. K., Schaller, C., & Klemm, O. (2022). Quantification of Urban Methane Emissions: A Combination of Stationary with Mobile Measurements. Atmosphere, 13(10), 1596. https://doi.org/10.3390/atmos13101596