Evaluation of Extreme Precipitation Indices in Brazil’s Semiarid Region from Satellite Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Data
2.3. Extreme Precipitation Indices
2.4. Statistical Analysis
- (a)
- BIAS: It is a comparison of the averages of the two databases, IMERG and rain gauges (Equation (1)). Positive values indicate overestimation and negative values indicate underestimation of the IMERG values in relation to the observed data.
- (b)
- Root-mean-squared error (RMSE): It is one of the most widely used methods to measure absolute error between two databases. It is sensitive to larger errors and is represented by Equation (2).
- (c)
- Spearman correlation coefficient (r): It measures the strength of the association between two databases.
- (d)
- Probability density function (PDF): It describes the behavior, in polygon form, of the frequency distribution of a random variable. The probability of the random variable being less than a given value of interest, x, is calculated using the cumulative distribution function (CDF), as in Equation (4).
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alvalá, R.C.S.; Cunha, A.P.M.A.; Brito, S.S.B.; Seluchi, M.E.; Marengo, J.A.; Moraes, O.L.L.; Carvalho, M.A. Drought monitoring in the Brazilian Semiarid region. An. Acad. Bras. Ciências 2017, 91, e20170209. [Google Scholar] [CrossRef] [PubMed]
- Marengo, J.A.; Galdos, M.V.; Challinor, A.; Cunha, A.P.; Marin, F.R.; Vianna, M.D.S.; Alvala, R.C.S.; Alves, L.M.; Moraes, O.L.; Bender, F. Drought in Northeast Brazil: A review of agricultural and policy adaptation options for food security. Clim. Resil. Sustain. 2021, 1, e17. [Google Scholar] [CrossRef]
- Silva, L.L.; Costa, R.F.; Campos, J.H.B.C.; Dantas, R.T. Influência das precipitações na produtividade agrícola no Estado da Paraíba. Rev. Bras. De Eng. Agrícola E Ambient. 2009, 13, 454–461. [Google Scholar] [CrossRef]
- Braga, R.A.P. As águas invisíveis nos rios intermitentes. Águas Areias 2016, 1, 11–37. [Google Scholar]
- Andrade, L.d.M.B.; Guedes, G.R.; Noronha, K.V.M.d.S.; Santos e Silva, C.M.; Andrade, J.P.; Martins, A.S.F.S. Health-related vulnerability to climate extremes in homoclimatic zones of Amazonia and Northeast region of Brazil. PLoS ONE 2021, 16, e0259780. [Google Scholar] [CrossRef]
- Dahri, Z.H.; Ludwig, F.; Moors, E.; Ahmad, S.; Ahmad, B.; Ahmad, S.; Riaz, M.; Kabat, P. Climate change and hydrological regime of the high-altitude Indus basin under extreme climate scenarios. Sci. Total Environ. 2021, 768, 144467. [Google Scholar] [CrossRef]
- Marengo, J.A.; Torres, R.R.; Alves, L.M. Drought in northeast Brazil—past, present, and future. Theor. Appl. Climatol. 2016, 129, 1189–1200. [Google Scholar] [CrossRef]
- Rodrigues, D.T.; Gonçalves, W.A.; Spyrides, M.H.C.; Silva, C.M.S.E.; De Souza, D.O. Spatial distribution of the level of return of extreme precipitation events in Northeast Brazil. Int. J. Clim. 2020, 40, 5098–5113. [Google Scholar] [CrossRef]
- Mokrech, M.; Kebede, A.S.; Nicholls, R.J.; Wimmer, F.; Feyen, L. An integrated approach for assessing flood impacts due to future climate and socio-economic conditions and the scope of adaptation in Europe. Clim. Chang. 2014, 128, 245–260. [Google Scholar] [CrossRef]
- Shi, P.; Bai, X.; Kong, F.; Fang, J.; Gong, D.; Zhou, T.; Guo, Y.; Liu, Y.; Dong, W.; Wei, Z.; et al. Urbanization and air quality as major drivers of altered spatiotemporal patterns of heavy rainfall in China. Landsc. Ecol. 2017, 32, 1723–1738. [Google Scholar] [CrossRef]
- Oliveira, P.T.; e Silva, C.M.S.; Lima, K.C. Climatology and trend analysis of extreme precipitation in subregions of Northeast Brazil. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2016, 130, 77–90. [Google Scholar] [CrossRef]
- Rodrigues, D.T.; Gonçalves, W.A.; Spyrides, M.H.C.; e Silva, C.M.S. Spatial and temporal assessment of the extreme and daily precipitation of the Tropical Rainfall Measuring Mission satellite in Northeast Brazil. Int. J. Remote Sens. 2019, 41, 549–572. [Google Scholar] [CrossRef]
- Salio, P.; Hobouchian, M.P.; Skabar, Y.G.; Vila, D. Evaluation of high-resolution satellite precipitation estimates over southern South America using a dense rain gauge network. Atmospheric Res. 2015, 163, 146–161. [Google Scholar] [CrossRef]
- Behrangi, A.; Khakbaz, B.; Jaw, T.C.; Aghakouchak, A.; Hsu, K.; Sorooshian, S. Hydrologic evaluation of satellite precip-itation products over a mid-size basin. J. Hydrol. 2011, 397, 225–237. [Google Scholar] [CrossRef]
- Palharini, R.S.A.; Vila, D.A.; Rodrigues, D.T.; Palharini, R.C.; Mattos, E.V.; Pedra, G.U. Assessment of extreme rainfall estimates from satellite-based: Regional analysis. Remote Sens. Appl. Soc. Environ. 2021, 23, 100603. [Google Scholar] [CrossRef]
- Arshad, M.; Ma, X.; Yin, J.; Ullah, W.; Ali, G.; Ullah, S.; Liu, M.; Shahzaman, M.; Ullah, I. Evaluation of GPM-IMERG and TRMM-3B42 precipitation products over Pakistan. Atmospheric Res. 2020, 249, 105341. [Google Scholar] [CrossRef]
- Liu, J.; Xia, J.; She, D.; Li, L.; Wang, Q.; Zou, L. Evaluation of Six Satellite-Based Precipitation Products and Their Ability for Capturing Characteristics of Extreme Precipitation Events over a Climate Transition Area in China. Remote Sens. 2019, 11, 1477. [Google Scholar] [CrossRef]
- Tao, H.; Fischer, T.; Zeng, Y.; Fraedrich, K. Evaluation of TRMM 3B43 Precipitation Data for Drought Monitoring in Jiangsu Province, China. Water 2016, 8, 221. [Google Scholar] [CrossRef]
- Kummerow, C.; Barnes, W.; Kozum, T.; Shiue, J.; Simpson, J. The Tropical Rainfall Measuring Mission (TRMM) Sensor Package. J. Atmos. Ocean. Technol. 1998, 15, 809–817. [Google Scholar] [CrossRef]
- Huang, X.; Wang, D.; Liu, Y.; Feng, Z.; Wang, D. Evaluation of extreme precipitation based on satellite retrievals over China. Front. Earth Sci. 2018, 12, 846–861. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-Global, Multiyear, Combined-Sensor Precipitation Estimates at Fine Scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Li, N.; Wang, Z.; Chen, X.; Austin, G. Studies of General Precipitation Features with TRMM PR Data: An Extensive Overview. Remote Sens. 2019, 11, 80. [Google Scholar] [CrossRef]
- Curtarelli, M.P.; Rennó, C.D.; Alcântara, E.H. Evaluation of the Tropical Rainfall Measuring Mission 3B43 product over an inland area in Brazil and the effects of satellite boost on rainfall estimates. J. Appl. Remote Sens. 2014, 8, 083589. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Xie, P.; Yoo, S.-H. NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). Algorithm Theor. Basis Doc. Version 2015, 4, 30. [Google Scholar]
- Levizzani, V.; Kidd, C.; Kirschbaum, D.B.; Kummerow, C.D.; Nakamura, K.; Turk, J. (Eds.) Satellite Precipitation measurement. In Advances in Global Change Research, 1st ed.; Springer: Berlin/Heiderlberg, Germany, 2020; Volume 1. [Google Scholar]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Singh, N.; Kumar, A.; Anshumali; Singh, J.; Nath, D. Observations on the distribution of precipitation over northern India usingjoint CloudSat, CALIPSO and TRMM measurements. Remote Sens. Lett. 2020, 11, 117–126. [Google Scholar] [CrossRef]
- Rodrigues, D.T.; e Silva, C.M.S.; dos Reis, J.S.; Palharini, R.S.A.; Júnior, J.B.C.; da Silva, H.J.F.; Mutti, P.R.; Bezerra, B.G.; Gonçalves, W.A. Evaluation of the Integrated Multi-SatellitE Retrievals for the Global Precipitation Measurement (IMERG) Product in the São Francisco Basin (Brazil). Water 2021, 13, 2714. [Google Scholar] [CrossRef]
- Yu, C.; Zheng, J.; Hu, D.; Di, Y.; Zhang, X.; Liu, M. Evaluation and Correction of IMERG Late Run Precipitation Product in Rainstorm over the Southern Basin of China. Water 2021, 13, 231. [Google Scholar] [CrossRef]
- Li, X.; Chen, Y.; Wang, H.; Zhang, Y. Assessment of GPM IMERG and radar quantitative precipitation estimation (QPE) products using dense rain gauge observations in the Guangdong-Hong Kong-Macao Greater Bay Area, China. Atmospheric Res. 2020, 236, 104834. [Google Scholar] [CrossRef]
- Freitas, E.D.S.; Coelho, V.H.R.; Xuan, Y.; Melo, D.D.C.; Gadelha, A.N.; Santos, E.A.; Galvão, C.D.O.; Filho, G.M.R.; Barbosa, L.R.; Huffman, G.J.; et al. The performance of the IMERG satellite-based product in identifying sub-daily rainfall events and their properties. J. Hydrol. 2020, 589, 125128. [Google Scholar] [CrossRef]
- Navarro, A.; García-Ortega, E.; Merino, A.; Sánchez, J.L.; Tapiador, F.J. Orographic biases in IMERG precipitation estimates in the Ebro River basin (Spain): The effects of rain gauge density and altitude. Atmos. Res. 2020, 244, 105068. [Google Scholar] [CrossRef]
- Rojas, Y.; Minder, J.R.; Campbell, L.S.; Massmann, A.; Garreaud, R. Assessment of GPM IMERG satellite precipitation estimation and its dependence on microphysical rain regimes over the mountains of south-central Chile. Atmos. Res. 2021, 253, 105454. [Google Scholar] [CrossRef]
- Moazami, S.; Najafi, M.R. A comprehensive evaluation of GPM-IMERG V06 and MRMS with hourly ground-based pre-cipitation observations across Canada. J. Hydrol. 2021, 594, 125929. [Google Scholar] [CrossRef]
- Ledru, M.-P.; Jeske-Pieruschka, V.; Bremond, L.; Develle, A.-L.; Sabatier, P.; Martins, E.S.P.R.; Filho, M.R.D.F.; Fontenele, D.P.; Arnaud, F.; Favier, C.; et al. When archives are missing, deciphering the effects of public policies and climate variability on the Brazilian semi-arid region using sediment core studies. Sci. Total Environ. 2020, 723, 137989. [Google Scholar] [CrossRef]
- IBGE. Panorama 2018: Características da População e Dos Domicílios—Resultados do Universo. Available online: https://biblioteca.ibge.gov.br/visualizacao/periodicos/93/cd_2010_caracteristicas_populacao_domicilios.pdf/ (accessed on 19 April 2019).
- Joly, C.A.; Aidar, M.P.M.; Klink, C.A.; Mcgraph, D.G.; Moreira, A.G.; Moutinho, P.; Nepstad, D.C.; Oliveira, A.A.; Pott, A.; Sampaio, E.V.S.B. Evolution of the Brazilian Phytogeography Classification Systems: Implications for Biodiversity Conservation; Ciência e Cultura (SBPC): São Paulo, Brazil, 1999; Volume 51, pp. 331–348. [Google Scholar]
- Ministério da Integração Nacional. Resolução nº 115, de 23 de Novembro de 2017. Diário Oficial da União; Conselho Deliberativo da Superintendência do Desenvolvimento do Nordeste—SUDENE: São Paulo, Brazil, 2017.
- Salviano, J.I.A. Relações Entre Instabilidades das Chuvas e Indicadores de Produção de Lavouras de Sequeiro no Semiárido Cearense, Brasil, 2021, 131 f, Dissertation. Master’s Thesis, Center for Agrarian Sciences, Federal University of Ceará Universidade Federal do Ceará, Fortaleza, Brazil, 2021. [Google Scholar]
- Min, S.K.; Zhang, X.B.; Zwiers, F.W.; Hegerl, G.C. Human contribution to more-intense precipitation extremes. Nature 2011, 470, 378–381. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Wang, Z.; Zhou, X.; Lai, C.; Lin, W.; Chen, X. Observed changes in precipitation extremes across 11 basins in China during 1961–2013. Int. J. Clim. 2016, 36, 2866–2885. [Google Scholar] [CrossRef]
- Muhammad, W.; Yang, H.; Lei, H.; Muhammad, A.; Yang, D. Improving the Regional Applicability of Satellite Precipitation Products by Ensemble Algorithm. Remote Sens. 2018, 10, 577. [Google Scholar] [CrossRef]
- Palharini, R.; Vila, D.; Rodrigues, D.; Quispe, D.; Palharini, R.; Siqueira, R.; Afonso, J. Assessment of the Extreme Precipitation by Satellite Estimates over South America. Remote Sens. 2020, 12, 2085. [Google Scholar] [CrossRef]
- Rozante, J.R.; Vila, D.A.; Chiquetto, J.B.; Fernandes, A.D.A.; Alvim, D.S. Evaluation of TRMM/GPM Blended Daily Products over Brazil. Remote Sens. 2018, 10, 882. [Google Scholar] [CrossRef]
- Yu, L.; Leng, G.; Python, A. A comprehensive validation for GPM IMERG precipitation products to detect extremes and drought over mainland China. Weather Clim. Extremes 2022, 36, 100458. [Google Scholar] [CrossRef]
- Hobouchian, M.P.; Salio, P.; Skabar, Y.G.; Vila, D.; Garreaud, R. Assessment of satellite precipitation estimates over the slopes of the subtropical Andes. Atmospheric Res. 2017, 190, 43–54. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, Y.; Yang, Y. Using High-Density Rain Gauges to Validate the Accuracy of Satellite Precipitation Products over Complex Terrains. Atmosphere 2020, 11, 633. [Google Scholar] [CrossRef]
- Yu, L.; Leng, G.; Python, A.; Peng, J. A Comprehensive Evaluation of Latest GPM IMERG V06 Early, Late and Final Precipitation Products across China. Remote Sens. 2021, 13, 1208. [Google Scholar] [CrossRef]
- Gleckler, P.J.; Taylor, K.E.; Doutriaux, C. Performance metrics for climate models. J. Geophys. Res. 2008, 113, D06104. [Google Scholar] [CrossRef]
Indices | Definitions | Units |
---|---|---|
PRCPTOT | Annual total precipitation on wet days | mm |
SDII | Simple precipitation intensity index | mm/day |
RX 1 day | Monthly maximum 1-day precipitation | mm |
RX 5 day | Monthly maximum 5-day precipitation | mm |
R95pToT | Annual total PRCP when RR > 95p | mm |
R90pToT | Annual total PRCP when RR > 99p | mm |
CDD | Maximum length of dry spell, maximum number of consecutive days with RR < 1 mm | days |
CWD | Maximum length of wet spell, maximum number of consecutive days with RR ≥ 1 mm | days |
R1mm | Annual count of days when PRCP ≥ 1 mm | days |
R10mm | Annual count of days when PRCP ≥ 10 mm | days |
R20mm | Annual count of days when PRCP ≥ 20 mm | days |
R50mm | Annual count of days when PRCP ≥ 50 mm | days |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, A.L.M.; Gonçalves, W.A.; Rodrigues, D.T.; Andrade, L.d.M.B.; e Silva, C.M.S. Evaluation of Extreme Precipitation Indices in Brazil’s Semiarid Region from Satellite Data. Atmosphere 2022, 13, 1598. https://doi.org/10.3390/atmos13101598
dos Santos ALM, Gonçalves WA, Rodrigues DT, Andrade LdMB, e Silva CMS. Evaluation of Extreme Precipitation Indices in Brazil’s Semiarid Region from Satellite Data. Atmosphere. 2022; 13(10):1598. https://doi.org/10.3390/atmos13101598
Chicago/Turabian Styledos Santos, Ana Letícia Melo, Weber Andrade Gonçalves, Daniele Tôrres Rodrigues, Lara de Melo Barbosa Andrade, and Claudio Moises Santos e Silva. 2022. "Evaluation of Extreme Precipitation Indices in Brazil’s Semiarid Region from Satellite Data" Atmosphere 13, no. 10: 1598. https://doi.org/10.3390/atmos13101598
APA Styledos Santos, A. L. M., Gonçalves, W. A., Rodrigues, D. T., Andrade, L. d. M. B., & e Silva, C. M. S. (2022). Evaluation of Extreme Precipitation Indices in Brazil’s Semiarid Region from Satellite Data. Atmosphere, 13(10), 1598. https://doi.org/10.3390/atmos13101598