Forecasting Crop Residue Fires in Northeastern China Using Machine Learning
Abstract
:1. Introduction
2. Research area and Methodology
2.1. Spatiotemporal Characteristics of the Research Area
2.2. Study Data
2.2.1. Crop Residue Open Burning Events Data
2.2.2. Surface Meteorological Data
2.2.3. Soil Moisture Content Data
2.2.4. Anthropogenic Management and Control Policy
2.3. Methodology
2.3.1. Data Preprocessing
2.3.2. Logistic Regression (LR)
2.3.3. Backpropagation Neural Network (BPNN)
2.3.4. Decision Tree (DT)
2.3.5. Model Evaluation
3. Results
3.1. Frequency of Fire Events
3.2. Comparison of Verification Accuracy between Models
3.3. Causes and Analysis of False Fire Results
4. Discussion
4.1. Forecasting Improvement and Model Evaluation
4.2. Correlation of Factors Affecting Combustion
4.3. Advantages and Limitations of ML Methods for Fire Forecasting
4.4. Prospects for the Future of Model Application
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, S.; Wang, X.F.; Xiao, Y.; Tain, H.; Zhong, G.S.; Sun, Z.Y. Study on spatial distribution of crop residue burning and PM2.5 change in China. Environ. Pollut. 2017, 220, 204–221. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.M.; Zhang, X.L.; Zhang, S.C.; Chen, W.W.; Tong, D.Q.; Xiu, A.J. Effects of agricultural biomass burning on regional gaze in China: A review. Atmosphere 2017, 8, 88. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.S.; Gao, B. Fire location model based on adaptive learning rate BP Neural Network. Comput. Syst. Appl. 2019, 28, 250–254, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Satir, O.; Berberoglu, S.; Donmez, C. Mapping regional forest fire probability using artificial neural network model in a Mediterranean forest ecosystem. Geomat. Nat. Haz. Risk. 2016, 7, 1645–1658. [Google Scholar] [CrossRef] [Green Version]
- Barboza, C.E.; Turpo, E.Y.; de Almeida, C.M.; Salas, L.R.; Rojas, N.B.; Silva, L.; Jhonsy, O.; Barrena, M.A.; Oliva, M.; Espinoza-Villar, R. Monitoring wildfires in the Northeastern Peruvian Amazon using Landsat-8 and Sentinel-2 imagery in the GEE Platform. ISPRS Int. J. Geo-Inf. 2020, 9, 564. [Google Scholar] [CrossRef]
- Zhang, G.L.; Wang, M.; Liu, K. Forest fire susceptibility modeling using a convolutional neural network for yunnan province of China. Int. J. Disast. Risk Sci. 2019, 10, 386–403. [Google Scholar] [CrossRef] [Green Version]
- Michael, Y.; Helman, D.; Glickman, O.; Gabay, D.; Brenner, S.; Lensky, I.M. Forecasting fire risk with machine learning and dynamic information derived from satellite vegetation index time-series. Sci. Total Environ. 2021, 764, 142844. [Google Scholar] [CrossRef]
- Li, L.M.; Song, W.G.; Ma, J.; Kohyu, S. Artificial neural network approach for modeling the impact of population density and weather parameters on forest fire risk. Int. J. Wildland Fire 2009, 18, 640–647. [Google Scholar] [CrossRef]
- Alkabbani, H.; Ramadan, A.; Zhu, Q.Q.; Elkamel, A. An improved air quality index machine learning-based forecasting with multivariate data imputation approach. Atmosphere 2022, 13, 1144. [Google Scholar] [CrossRef]
- Jain, P.; Coogan, S.C.P.; Subramanian, S.G.; Crowley, M.; Taylor, S.; Flannigan, M.D. A review of machine learning applications in wildfire science and management. Environ. Rev. 2020, 28, 478–505. [Google Scholar] [CrossRef]
- Liu, F.; Xu, L.; Ma, X.X. Development of BP neural network and its application in chemistry and chemical engineering. Chem. Ind. Eng. Prog. 2019, 38, 2559–2573, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Di Giuseppe, F.; Rémy, S.; Pappenberger, F.; Wetterhall, F. Improving Forecasts of Biomass Burning Emissions with the Fire Weather Index. J. Appl. Meteorol. Clim. 2017, 56, 2789–2799. [Google Scholar] [CrossRef]
- Feng, X.; Fu, T.M.; Cao, H.S.; Tian, H.; Fan, Q.; Chen, X.Y. Neural network predictions of pollutant emissions from open burning of crop residues: Application to air quality forecasts in southern China. Atmos. Environ. 2019, 204, 22–31. [Google Scholar] [CrossRef]
- Bai, B.; Zhao, H.M.; Zhang, S.M.; Zhang, X.L.; Yang, G.Y. Forecasting of agricultural straw burning in the Northeastern China based on neural network. China Environ. Sci. 2020, 40, 5205–5212, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wen, X.; Chen, W.W.; Chen, B.; Yang, C.J.; Tu, G.; Cheng, T.H. Does the prohibition on open burning of straw mitigate air pollution? An empirical study in Jilin Province of China in the post-harvest season. J. Environ. Manag. 2020, 264, 110451. [Google Scholar] [CrossRef]
- Bai, B.; Zhao, H.M.; Zhang, S.M.; Zhang, X.L.; Du, Y. Can neural networks forecast open field burning of crop residue in regions with anthropogenic management and control? A case study in Northeastern China. Remote Sens. 2021, 13, 3988. [Google Scholar] [CrossRef]
- Li, H.; Zhang, H.Y.; Li, Q.X.; Zhao, J.J.; Guo, X.Y.; Ying, H.; Deng, G.R.; Wu, R.H.; Wang, S.L. Vegetation productivity dynamics in response to climate change and human activities under different topography and land cover in Northeast China. Remote Sens. 2021, 13, 975. [Google Scholar] [CrossRef]
- Xu, X.Z.; Xu, Y.; Chen, S.C.; Xu, S.G.; Zhang, H.W. Soil loss and conservation in the black soil region of Northeast China: A retrospective study. Environ. Sci. Policy 2010, 13, 793–800. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, G.S.; Liu, D.L.; Wang, B.; Xiao, D.P.; He, L. Climate-associated rice yield change in the Northeast China Plain: A simulation analysis based on CMIP5 multi-model ensemble projection. Sci. Total Environ. 2019, 666, 126–138. [Google Scholar] [CrossRef]
- Wang, J.W.; Tang, H.; Wang, J.F. Comprehensive utilization stauts and development analysis of crop straw resource in Northeast China. Trans. Chin. Soc. Agric. Mach. 2017, 48, 1–21, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhang, J.Y.; Yang, X.H.; Tu, X.M.; Ning, K.X.; Luan, X.C. Spatio-temporal change of straw burning fire points in field of China from 2014 to 2018. Trans. Chin. Soc. Agric. Eng. 2019, 35, 191–199, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- de Vasconcelos, M.J.P.; Silva, S.; Tome, M.; Alvim, M.; Pereira, J.M.C. Spatial prediction of fire ignition probabilities: Comparing logistic regression and neural networks. Photogramm. Eng. Rem. S 2001, 67, 73–81. [Google Scholar]
- JAXA Himawari Monitor P-Tree System. Available online: https://www.eorc.jaxa.jp/ptree/ (accessed on 7 August 2020).
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An introduction to Himawari-8/9-Japan’s new-generation geostationary meteorological satellites. J. Meteorol. Soc. Jpn. 2016, 94, 151–183. [Google Scholar] [CrossRef] [Green Version]
- China Meteorological Data Network Home Page. Available online: https://data.cma.cn/ (accessed on 20 June 2020).
- European Space Agency, Climate Change Initiative Soil Moisture Project Home Page. Available online: http://www.esa-soilmoisturecci.org/ (accessed on 8 December 2020).
- Dorigo, W.; Wagner, W.; Albergel, C.; Albrecht, F.; Balsamo, G.; Brocca, L.; Chung, D.; Ertl, M.; Forkel, M.; Gruber, A.; et al. ESA CCI soil moisture for improved earth system understanding: State-of-the art and future directions. Remote Sens. Environ. 2017, 203, 185–215. [Google Scholar] [CrossRef]
- Jilin Province Government, Work Program for Straw Open Burning Prohibition in Autumn and Winter of 2018. Available online: http://sthjt.jl.gov.cn/xxfb/tzgg/201810/t20181024_5196951.html/ (accessed on 10 July 2020).
- Vega-Garcia, C.; Woodard, P.M.; Titus, S.J.; Adamowicz, W.L.; Lee, B.S. A logit model for predicting the daily occurrence of human caused forest-fires. Int. J. Wildland Fire 1995, 5, 101–111. [Google Scholar] [CrossRef]
- Martinez, J.; Vega-Garcia, C.; Chuvieco, E. Human-caused wildfire risk rating for prevention planning in Spain. J. Environ. Manag. 2009, 90, 1241–1252. [Google Scholar] [CrossRef]
- Oliveira, S.; Oehler, F.; San-Miguel-Ayanz, J.; Camia, A.; Pereira, J.M.C. Modeling spatial patterns of fire occurrence in Mediterranean Europe using Multiple Regression and Random Forest. For. Ecol. Manag. 2012, 275, 117–129. [Google Scholar] [CrossRef]
- Rodrigues, M.; de la Riva, J.; Fotheringham, S. Modeling the spatial variation of the explanatory factors of human-caused wildfires in Spain using geographically weighted logistic regression. Appl. Geogr. 2014, 48, 52–63. [Google Scholar] [CrossRef]
- Liu, W.B.; Wang, Z.D.; Liu, X.H.; Zeng, N.Y.; Liu, Y.R.; Alsaadi, F.E. A survey of deep neural network architectures and their applications. Neurocomputing 2017, 234, 11–26. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Groemping, U. Variable importance assessment in regression: Linear regression versus random forest. Am. Stat. 2009, 63, 308–319. [Google Scholar] [CrossRef]
- Jimenez-Valverde, A. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modelling. Glob. Ecol. Biogeogr. 2012, 21, 498–507. [Google Scholar] [CrossRef]
- Chang, Y.; Zhu, Z.L.; Bu, R.C.; Chen, H.W.; Feng, Y.T.; Li, Y.H.; Hu, Y.M.; Wang, Z.C. Predicting fire occurrence patterns with logistic regression in Heilongjiang Province, China. Landsc. Ecol. 2013, 28, 1989–2004. [Google Scholar] [CrossRef]
- Shukla, A.; Kumar, S.; Singh, H. MLP-ANN-Based execution time prediction model and assessment of input parameters through structural modeling. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2021, 91, 577–585. [Google Scholar] [CrossRef]
- Littell, J.S.; McKenzie, D.; Peterson, D.L.; Westerling, A.L. Climate and wildfire area burned in western U.S. ecoprovinces, 1916–2003. Ecol. Appl. 2009, 19, 1003–1021. [Google Scholar] [CrossRef]
- Guo, F.T.; Wang, G.Y.; Su, Z.W.; Liang, H.L.; Wang, W.H.; Lin, F.F.; Liu, A.Q. What drives forest fire in Fujian, China? Evidence from logistic regression and Random Forests. Int. J. Wildland Fire 2016, 25, 505–519. [Google Scholar] [CrossRef]
- Chen, D. Prediction of forest fire occurrence in Daxing’an Mountains based on logistic r egression model. For. Resour. Manag. 2019, 1, 116–122, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Bui, D.T.; Bui, Q.T.; Nguyen, Q.P.; Pradhan, B.; Nampak, H.; Trinh, P.T. A hybrid artificial intelligence approach using GIS-based neural-fuzzy inference system and particle swarm optimization for forest fire susceptibility modeling at a tropical area. Agr. For. Meteorol. 2017, 233, 32–44. [Google Scholar] [CrossRef]
- Bolboaca, S.D.; Jäntschi, L. Pearson versus Spearman, Kendall’s Tau correlation analysis on structure-activity relationships of biologic active compounds. Leonardo J. Sci. 2006, 5, 179–200. [Google Scholar]
- Vasilakos, C.; Kalabokidis, K.; Hatzopoulos, J.; Matsinos, I. Identifying wildland fire ignition factors through sensitivity analysis of a neural network. Nat. Hazards 2009, 50, 125–143. [Google Scholar] [CrossRef]
- Maeda, E.E.; Formaggio, A.R.; Shimabukuro, Y.E.; Arcoverde, G.F.B.; Hansen, M.C. Predicting forest fire in the Brazilian Amazon using MODIS imagery and artificial neural networks. Int. J. Appl. Earth Obs. 2009, 11, 265–272. [Google Scholar] [CrossRef]
- Guo, C.Q.; Cui, Y.L. Utilizing artificial neural network to simulate and predict the hydraulic performance of free water surface constructed wetlands. J. Environ. Manag. 2021, 305, 114334. [Google Scholar] [CrossRef]
- Akratos, C.S.; Papaspyros, J.N.E.; Tsihrintzis, V.A. Total nitrogen and ammonia removal prediction in horizontal subsurface flow constructed wetlands: Use of artificial neural networks and development of a design equation. Bioresour. Technol. 2009, 100, 586–596. [Google Scholar] [CrossRef]
- Witek-Krowiak, A.; Chojnacka, K.; Podstawczyk, D.; Dawiec, A.; Pokomeda, K. Application of response surface methodology and artificial neural network methods in modelling and optimization of biosorption process. Bioresour. Technol. 2014, 160, 150–160. [Google Scholar] [CrossRef]
- Cheng, S.B.; Jin, Y.F.; Harrison, S.; Quilodrán-Casas, C.; Prentice, I.C.; Guo, Y.K.; Arcucci, R. Parameter Flexible Wildfire Prediction Using Machine Learning Techniques: Forward and Inverse Modelling. Remote Sens. 2022, 14, 3228. [Google Scholar] [CrossRef]
- Cheng, S.B.; Prentice, I.C.; Huang, Y.H.; Jin, Y.F.; Guo, Y.K.; Arcucci, R. Data-driven surrogate model with latent data assimilation: Application to wildfire forecasting. J. Comput. Phys. 2022, 464, 111302. [Google Scholar] [CrossRef]
- Zhu, Q.; Li, F.; Riley, W.J.; Xu, L.; Zhao, L.; Yuan, K.X.J.; Wu, H.Y.; Gong, J.Y.; Randerson, J. Building a machine learning surrogate model for wildfire activities within a global Earth system model. Geosci. Model. 2022, 15, 1899–1911. [Google Scholar] [CrossRef]
Training Time | Training Samples | Verifying Time | Verifying Samples | Consideration Variables | Input Variables |
---|---|---|---|---|---|
16 March to 20 April, 2018–2020 | 14,924 | 16 March to 20 April 2021 | 48,964 | Meteorological elements (5), soil moisture content (2), open burning ban policy | WIN, TEM, PRS, PRE, PHU, SOIL, D2-D1, OPEA |
Methods | Sort | Verified Fire Points | TP | TN | FN | FP |
---|---|---|---|---|---|---|
LR | Samples | 17,228 | 10,612 | 17,866 | 13,870 | 6616 |
Proportion (%) | 35.10 | 21.67 | 36.49 | 28.33 | 13.51 | |
BPNN | Samples | 28,072 | 18,586 | 14,996 | 5896 | 9486 |
Proportion (%) | 57.30 | 37.96 | 30.63 | 12.04 | 19.37 | |
DT | Samples | 20,431 | 17,461 | 21,512 | 7021 | 2970 |
Proportion (%) | 41.70 | 35.66 | 43.93 | 14.34 | 6.07 |
Model Classification | AUC | Sensitivity | Specificity | LR+ | LR- | Cut-Off Value | Accuracy | Precision | Recall |
---|---|---|---|---|---|---|---|---|---|
LR | 0.72 | 69.40 | 63.38 | 1.90 | 0.48 | 0.33 | 58.16 | 37.26 | 43.35 |
BPNN | 0.59 | 53.53 | 73.45 | 2.02 | 0.63 | 0.27 | 70.82 | 55.34 | 75.92 |
DT | 0.82 | 67.24 | 84.37 | 4.30 | 0.39 | 0.52 | 79.59 | 44.8 | 71.32 |
Methods | Sort | Correlation of the Input Variables | |||||||
---|---|---|---|---|---|---|---|---|---|
WIN | PRE | TEM | PRS | PHU | SOIL | D2-D1 | OPEA | ||
LR | R | −0.427 | −0.02 | 0.407 | 0.287 | −0.292 | 0.154 | −0.007 | −0.56 |
Sig. | 0 | 0.264 | 0 | 0 | 0 | 0 | 0.108 | 0 | |
BPNN | R | −0.067 | −0.099 | 0.134 | 0.284 | −0.458 | 0.046 | −0.077 | −0.495 |
Sig. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
DT | R | −0.056 | −0.126 | 0.091 | 0.25 | −0.335 | 0.03 | −0.06 | −0.382 |
Sig. | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, B.; Zhao, H.; Zhang, S.; Li, X.; Zhang, X.; Xiu, A. Forecasting Crop Residue Fires in Northeastern China Using Machine Learning. Atmosphere 2022, 13, 1616. https://doi.org/10.3390/atmos13101616
Bai B, Zhao H, Zhang S, Li X, Zhang X, Xiu A. Forecasting Crop Residue Fires in Northeastern China Using Machine Learning. Atmosphere. 2022; 13(10):1616. https://doi.org/10.3390/atmos13101616
Chicago/Turabian StyleBai, Bing, Hongmei Zhao, Sumei Zhang, Xiaolan Li, Xuelei Zhang, and Aijun Xiu. 2022. "Forecasting Crop Residue Fires in Northeastern China Using Machine Learning" Atmosphere 13, no. 10: 1616. https://doi.org/10.3390/atmos13101616
APA StyleBai, B., Zhao, H., Zhang, S., Li, X., Zhang, X., & Xiu, A. (2022). Forecasting Crop Residue Fires in Northeastern China Using Machine Learning. Atmosphere, 13(10), 1616. https://doi.org/10.3390/atmos13101616