Severe Precipitation Phenomena in Crimea in Relation to Atmospheric Circulation
Abstract
:1. Introduction
2. Study Area, Data, and Methods
2.1. Study Area and Data
- The critical value of hydrometeorological quantity or intensity of the phenomenon must be rare for a given territory or time of year;
- The recurrence probability of the meteorological value associated with SWP should be no more than 10%.
2.2. Time Series Analysis
2.3. Statistical Estimation of Extremes
3. Hazard Meteorological Events in Crimea
3.1. SWP of All Types on the Crimean Peninsula
3.2. SWP of Precipitation in Crimea
4. Statistical Analysis of Maximum Annual Daily Precipitation
4.1. Application of Stationary GEV Function
4.2. Application of Non-Stationary GEV Function
5. Atmospheric Trigger for SWPp
5.1. “Mixed” Group
5.2. “Western” Group
5.3. “Eastern” Group
5.4. “Central” Group
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; 3056p. [Google Scholar] [CrossRef]
- Coumou, D.; Robinson, A. Historic and future increase in the global land area affected by monthly heat extremes. Environ. Res. Lett. 2013, 8, 034018. [Google Scholar] [CrossRef]
- Zampieri, M.; D’Andrea, F.; Vautard, R.; Ciais, P.; de Noblet-Ducoudre, N.; Yiou, P. Hot European Summers and the Role of Soil Moisture in the Propagation of Mediterranean Drought. J. Clim. 2009, 22, 4747–4758. [Google Scholar] [CrossRef]
- Caesar, J.; Alexander, L.; Vose, R. Large-scale changes in observed daily maximum and minimum temperatures: Creation and analysis of a new gridded data set. J. Geophys. Res. 2006, 111, D05101. [Google Scholar] [CrossRef]
- Feudale, L.; Shukla, J. Influence of sea surface temperature on the European heat wave of 2003 summer. Part I: An observational study. Clim. Dyn. 2011, 36, 1691–1703. [Google Scholar] [CrossRef]
- Donat, M.G.; Alexander, L.V.; Yang, H.; Durre, I.; Vose, R.; Dunn, R.J.H.; Willett, K.M.; Aguilar, E.; Brunet, M.; Caesar, J. Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. J. Geophys. Res. Atmos. 2013, 118, 2098–2118. [Google Scholar] [CrossRef] [Green Version]
- Coumou, D.; Rahmstorf, S. A decade of weather extremes. Nat. Clim. Chang. 2012, 2, 491–496. [Google Scholar] [CrossRef]
- Mishra, V.; Ganguly, A.R.; Nijssen, B.; Lettenmaier, D.P. Changes in observed climate extremes in global urban areas. Environ. Res. Lett. 2015, 10, 024005. [Google Scholar] [CrossRef]
- Hodnebrog, O.; Marelle, L.; Alterskjær, K.; Wood, R.R.; Ludwig, R.; Fischer, E.M.; Richardson, T.B.; Forster, P.M.; Sillmann, J.; Myhre, G. Intensification of summer precipitation with shorter time-scales in Europe. Environ. Res. Lett. 2019, 14, 124050. [Google Scholar] [CrossRef]
- Chen, Y.; Liao, Z.; Shi, Y.; Li, P.; Zhai, P. Greater flash flood risks from hourly precipitation extremes preconditioned by heatwaves in the Yangtze River Valley. Geophys. Res. Lett. 2022, 49, e2022GL099485. [Google Scholar] [CrossRef]
- Polonsky, A.; Evstigneev, V.; Naumova, V.; Voskresenskaya, E. Low-frequency variability of storms in the northern Black Sea and associated processes in the ocean-atmosphere system. Reg. Environ. Chang. 2014, 14, 1861–1871. [Google Scholar] [CrossRef]
- The Global Risks Report 2022, 17th Edition, World Economic Forum. Available online: https://www.weforum.org/reports/global-risks-report-2022 (accessed on 15 August 2022).
- Ullah, I.; Saleem, F.; Iyakaremye, V.; Yin, J.; Ma, X.; Syed, S.; Hina, S.; Asfaw, T.G.; Omer, A. Projected changes in socioeconomic exposure to heatwaves in South Asia under changing climate. Earth’s Future 2022, 10, e2021EF002240. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, J.; Pan, T.; Liu, Y.; Zhang, Y.; Ge, Q.; Ciais, P.; Penuelas, J. Global socioeconomic risk of precipitation extremes under climate change. Earth’s Future 2020, 8, e2019EF001331. [Google Scholar] [CrossRef] [PubMed]
- Iyakaremye, V.; Zeng, G.; Yang, X.; Zhang, G.; Ullah, I.; Gahigi, A.; Vuguziga, F.; Asfaw, T.G.; Ayugi, B. Increased high-temperature extremes and associated population exposure in Africa by the mid-21st century. Sci. Total Environ. 2021, 790, 148162. [Google Scholar] [CrossRef] [PubMed]
- Aguilar, E.; Auer, I.; Brunet, M.; Peterson, T.C.; Wieringa, J. Guidelines on Climate Metadata and Homogenization; WMO-TD No.1186, WCDMP No.53; WMO: Geneva, Switzerland, 2003; 55p. [Google Scholar]
- Bedritskii, A.I.; Korshunov, A.A.; Shaimardanov, M.Z. The bases of data on hazardous hydrometeorological phenomena in Russia and results of statistical analysis. Russ. Meteorol. Hydrol. 2009, 34, 703–708. [Google Scholar] [CrossRef]
- Kistler, R.; Kalnay, E.; Collins, W.; Saha, S.; White, G.; Woollen, J.; Chelliah, J.; Ebisuzaki, W.; Kanamitsu, M.; Kouksy, V.; et al. The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bull. Am. Meteorol. Soc. 2001, 82, 247–267. [Google Scholar] [CrossRef]
- Brockwell, P.J.; Davis, R.A. Time Series: Theory and Methods, 2nd ed.; Springer: New York, NY, USA, 1991; 580p. [Google Scholar]
- Shibzukhov, Z.M.; Dimitrichenko, D.P.; Kazakov, M.A. The empirical risk minimization principle based on average loss aggregating functions for regression problems. Softw. Syst. 2017, 2, 180–186. [Google Scholar] [CrossRef]
- Ghouch, A.; Genton, M. Local Polynomial Quantile Regression with Parametric Features. J. Am. Stat. Assoc. 2009, 104, 1416–1429. [Google Scholar] [CrossRef]
- Coles, S. An Introduction to Statistical Modeling of Extreme Values; Springer: New York, NY, USA, 2001; 211p. [Google Scholar]
- El Adlouni, S.; Ouarda, T.B.M.J.; Zhang, X.; Roy, R.; Bobèe, B. Generalized maximum likelihood estimators for the nonstationary generalized extreme value model. Water Resour. Res. 2007, 43, W03410. [Google Scholar] [CrossRef]
- The R Project for Statistical Computing. Available online: http://www.r-project.org/ (accessed on 15 August 2022).
- Gu, W.; Zhu, X.; Meng, X.; Qiu, X. Research on the Influence of Small-Scale Terrain on Precipitation. Water 2021, 13, 805. [Google Scholar] [CrossRef]
- Paik, K.; Kim, W. Simulating the evolution of the topography-climate coupled system. Hydrol. Earth Syst. Sci. 2021, 25, 2459–2474. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M.; Ruedy, R. Perception of climate change. Proc. Natl. Acad. Sci. USA 2012, 109, E2415–E2423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trenberth, K.E. Framing the way to relate climate extremes to climate change. Clim. Chang. 2012, 115, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Papalexiou, S.M.; Koutsoyiannis, D. Battle of extreme value distributions: A global survey on extreme daily rainfall. Water Resour. Res. 2013, 49, 187–201. [Google Scholar] [CrossRef]
- Hosking, J.R.M. L-moments: Analysis and estimation of distributions using linear combinations of order statistics. J. R. Stat Soc. Ser. B 1990, 52, 105–124. [Google Scholar] [CrossRef]
- Evstigneev, V.P.; Naumova, V.A.; Evstigneev, M.P.; Lemeshko, N.A. Physiographic factors of seasonal distribution of linear trends in air temperature on the Azov-Black Sea coast. Russ. Meteorol. Hydrol. 2016, 41, 19–27. [Google Scholar] [CrossRef]
- Evstigneev, V.P.; Lemeshko, N.A.; Naumova, V.A.; Evstigneev, M.P. Climate change induced uncertainty of wind energy potential for the Azov and Black Seas coastal zone. Ecol. Saf. Coast. Shelf Zones Sea 2020, 4, 22–39. [Google Scholar] [CrossRef]
- Kubryakov, A.; Stanichny, S.; Shokurov, M.; Garmashov, A. Wind velocity and wind curl variability over the Black Sea from QuikScat and ASCAT satellite measurements. Remote Sens. Environ. 2019, 224, 236–258. [Google Scholar] [CrossRef]
- Vautard, R.; Cattiaux, J.; Yiou, P.; Thépaut, J.N.; Ciais, P. Northern Hemisphere atmospheric stilling partly attributed to an increase in surface roughness. Nat. Geosci. 2010, 3, 756–761. [Google Scholar] [CrossRef]
- Kaznacheeva, V.D.; Shuvalov, S.V. Climatic characteristics of Mediterranean cyclones. Russ. Meteorol. Hydrol. 2012, 37, 315–323. [Google Scholar] [CrossRef]
- Nissen, K.M.; Leckebusch, G.C.; Pinto, J.G.; Renggli, D.; Ulbrich, S.; Ulbrich, U. Cyclones causing wind storms in the Mediterranean: Characteristics, trends and links to large-scale patterns. Nat. Hazards Earth Syst. Sci. 2010, 10, 1379–1391. [Google Scholar] [CrossRef]
- Maslova, V.N.; Voskresenskaya, E.N.; Lubkov, A.S.; Yurovsky, A.V.; Zhuravskiy, V.Y.; Evstigneev, V.P. Intensive cyclones in the Black Sea region: Change, variability, predictability and manifestations in the storm activity. Sustainability 2020, 12, 4468. [Google Scholar] [CrossRef]
- Ivanov, A.Y. Mesoscale Atmospheric Cyclonic Vortices over the Black and Caspian Seas as Seen in Satellite Remote Sensing Data. Izv. Atmos. Ocean. Phys. 2018, 54, 1089–1101. [Google Scholar] [CrossRef]
- Yarovaya, D.A.; Efimov, V.V. Mesoscale cyclones over the Black Sea. Russ. Meteorol. Hydrol. 2014, 39, 378–386. [Google Scholar] [CrossRef]
- Trigo, I.F.; Bigg, G.R.; Davies, T.D. Climatology of Cyclogenesis Mechanisms in the Mediterranean. Mon. Weath. Rev. 2002, 130, 549–569. [Google Scholar] [CrossRef]
No. | Station Name | Code | Longitude, ° | Latitude, ° | Height, m | Data Available From |
---|---|---|---|---|---|---|
1 | Chernomorskoe | 4553270 | 32.703 | 45.502 | 9 | 1936 |
2 | Klepinino | 4553420 | 34.2 | 45.5 | 37 | 1936 |
3 | Ishun | 4593380 | 33.8 | 45.9 | 3 | 1959 |
4 | Razdolnoe | 4583350 | 33.487 | 45.77 | 16 | 1976 |
5 | Dzhankoj | 4573440 | 34.392 | 45.709 | 6 | 1944 |
6 | Nizhnegorsk | 4553470 | 34.7 | 45.5 | 19 | 1936 |
7 | Vladislavovka | 4523540 | 35.378 | 45.164 | 35 | 1959 |
8 | Mysovoe | 4553580 | 35.825 | 45.45 | 15 | 1936 |
9 | Kerch | 4543640 | 36.4673 | 45.3562 | 46 | 1955 |
10 | Opasnoe | 4543660 | 36.6 | 45.4 | 0 | 1955 |
11 | Evpatoriya | 4523340 | 33.366 | 45.19 | 2 | 1936 |
12 | Belogorsk | 4513460 | 34.599 | 45.057 | 205 | 1966 |
13 | Simferopol | 4503400 | 34.003 | 45.019 | 180 | 1936 |
14 | Feodosiya | 4503540 | 35.382 | 45.04 | 22 | 1936 |
15 | Karadag | 4493520 | 35.2 | 44.91 | 42 | 1937 |
16 | Pochtovoe | 4483390 | 33.963 | 44.836 | 172 | 1936 |
17 | Angarskij pereval | 4483430 | 34.3 | 44.8 | 765 | 1963 |
18 | Alushta | 4473440 | 34.41 | 44.6763 | 3 | 1936 |
19 | Hersonesskij mayak | 4463340 | 33.35 | 44.581 | 2 | 1936 |
20 | Sevastopol | 4463350 | 33.5 | 44.6 | 7 | 1936 |
21 | Aj-Petri | 4453410 | 34.1 | 44.5 | 1180 | 1936 |
22 | Yalta | 4453420 | 34.17 | 44.495 | 66 | 1936 |
23 | Nikitskij sad | 4453430 | 34.24 | 44.511 | 207 | 1936 |
SWP Group | Month | Year | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
January | February | March | April | May | June | July | August | September | October | November | December | ||
Number of cases | |||||||||||||
Precipitation | 71 | 53 | 34 | 14 | 48 | 128 | 133 | 133 | 70 | 52 | 39 | 69 | 844 |
Wind | 51 | 43 | 32 | 15 | 6 | 14 | 9 | 10 | 8 | 19 | 26 | 44 | 277 |
Ice-frost phenomena | 18 | 12 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4 | 9 | 46 |
Blizzard | 16 | 16 | 6 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 5 | 44 |
Fog | 2 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 3 | 8 |
Average duration (time) | |||||||||||||
Precipitation | 10.5 | 11.0 | 10.6 | 10.2 | 6.4 | 6.2 | 4.3 | 4.8 | 6.8 | 9.7 | 9.8 | 10.3 | 8.4 |
Wind | 6.3 | 6.0 | 5.4 | 2.6 | 6.4 | 0.6 | 0.7 | 1.0 | 4.8 | 4.2 | 7.2 | 4.8 | 4.2 |
Ice-frost phenomena | 40.6 | 45.9 | 9.9 | 26.3 | 48.1 | 34.2 | |||||||
Blizzard | 21.6 | 22.1 | 19.7 | 18.2 | 20.4 | 20.4 | |||||||
Fog | 38.1 | 25.0 | 20.2 | 21.1 | 24.6 | 27.0 | |||||||
Maximum duration (time) | |||||||||||||
Wind | 35.2 | 26.9 | 26.8 | 6.1 | 12.0 | 17.5 | 2.8 | 3.3 | 12.5 | 13.6 | 34.0 | 23.6 | 35.2 |
Ice-frost phenomena | 105.0 | 147.9 | 20.0 | 50.7 | 170.8 | 170.8 | |||||||
Blizzard | 40.0 | 54.3 | 22.0 | 18.2 | 23.0 | 54.3 | |||||||
Fog | 54.1 | 25.0 | 20.2 | 21.1 | 37.4 | 54.1 |
No. | Station Name | GEV-Function Parameters Estimates | |||
---|---|---|---|---|---|
Sample Size, L | μ0 | σ | ξ | ||
1 | Chernomorskoe | 78 | 32.3 | 14.6 | 0.004 * |
2 | Klepinino | 80 | 28.5 | 11.1 | 0.295 |
3 | Ishun | 61 | 27.4 | 10.8 | 0.173 |
4 | Razdolnoe | 44 | 27.4 | 8.4 | 0.237 |
5 | Dzhankoj | 73 | 31.1 | 12.6 | 0.232 |
6 | Nizhnegorsk | 80 | 31.0 | 11.3 | 0.151 |
7 | Vladislavovka | 58 | 33.9 | 13.8 | 0.302 |
8 | Mysovoe | 77 | 30.5 | 12.4 | 0.011 * |
9 | Kerch | 66 | 30.8 | 12.8 | 0.114 |
10 | Opasnoe | 60 | 32.8 | 14.0 | 0.271 |
11 | Evpatoriya | 80 | 30.1 | 11.9 | −0.019 * |
12 | Belogorsk | 77 | 34.5 | 12.8 | 0.023 * |
13 | Simferopol | 80 | 30.6 | 9.0 | 0.276 |
14 | Feodosiya | 80 | 32.8 | 12.8 | 0.259 |
15 | Karadag | 70 | 30.5 | 10.9 | 0.069 * |
16 | Pochtovoe | 79 | 34.2 | 12.2 | 0.234 |
17 | Angarskij pereval | 58 | 52.5 | 16.4 | −0.078 * |
18 | Alushta | 80 | 32.0 | 12.3 | 0.231 |
19 | Hersonesskij mayak | 80 | 26.0 | 9.0 | 0.066 * |
20 | Sevastopol | 80 | 25.7 | 9.2 | −0.015 * |
21 | Aj-Petri | 79 | 60.9 | 22 | 0.093 |
22 | Yalta | 80 | 43.0 | 14.2 | 0.117 |
23 | Nikitskij sad | 80 | 38.1 | 11.2 | 0.211 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evstigneev, V.P.; Naumova, V.A.; Voronin, D.Y.; Kuznetsov, P.N.; Korsakova, S.P. Severe Precipitation Phenomena in Crimea in Relation to Atmospheric Circulation. Atmosphere 2022, 13, 1712. https://doi.org/10.3390/atmos13101712
Evstigneev VP, Naumova VA, Voronin DY, Kuznetsov PN, Korsakova SP. Severe Precipitation Phenomena in Crimea in Relation to Atmospheric Circulation. Atmosphere. 2022; 13(10):1712. https://doi.org/10.3390/atmos13101712
Chicago/Turabian StyleEvstigneev, Vladislav P., Valentina A. Naumova, Dmitriy Y. Voronin, Pavel N. Kuznetsov, and Svetlana P. Korsakova. 2022. "Severe Precipitation Phenomena in Crimea in Relation to Atmospheric Circulation" Atmosphere 13, no. 10: 1712. https://doi.org/10.3390/atmos13101712
APA StyleEvstigneev, V. P., Naumova, V. A., Voronin, D. Y., Kuznetsov, P. N., & Korsakova, S. P. (2022). Severe Precipitation Phenomena in Crimea in Relation to Atmospheric Circulation. Atmosphere, 13(10), 1712. https://doi.org/10.3390/atmos13101712