Impact of Illegal Application of Urea Regulator on Real-World Exhaust Nitrogen Oxygen and Particle Number Emissions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Test Vehicle and Route
2.2. Measurement System
2.3. Vehicle-Specific Power (VSP)
3. Results and Discussion
3.1. Effects on Nitrogen Oxides Emissions
3.1.1. Effects on NOx Instantaneous Volumetric Concentrations
3.1.2. Effects on Distance-Based NOx Emission Factors
3.1.3. Effects on VSP-Bin NOx Emission Rates
3.2. Effects on Particle Number Emissions
3.2.1. Effects on PN Instantaneous Volumetric Concentrations
3.2.2. Effects on Distance-Based PN Emission Factors
3.2.3. Effects on VSP-Bin PN Emission Rates
3.3. Variation in the Correlation between NOx and CO2
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Winkler, S.L.; Anderson, J.E.; Garza, L.; Ruona, W.C.; Vogt, R.; Wallington, T.J. Vehicle criteria pollutant (PM, NOx, CO, HCs) emissions: How low should we go? Npj Clim. Atmos. Sci. 2018, 1, 26. [Google Scholar] [CrossRef] [Green Version]
- Jing, B.; Wu, L.; Mao, H.; Gong, S.; He, J.; Zou, C.; Song, G.; Li, X.; Wu, Z. Development of a vehicle emission inventory with high temporal–spatial resolution based on NRT traffic data and its impact on air pollution in Beijing-Part 1: Development and evaluation of vehicle emission inventory. Atmos. Chem. Phys. 2016, 16, 3161–3170. [Google Scholar] [CrossRef] [Green Version]
- West, J.J.; Cohen, A.; Dentener, F.; Brunekreef, B.; Zhu, T.; Armstrong, B.; Bell, M.; Brauer, M.; Carmichael, G.; Costa, D.L.; et al. What We Breathe Impacts Our Health: Improving Understanding of the Link between Air Pollution and Health. Environ. Sci. Technol. 2016, 50, 4895–4904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelly, F.J.; Zhu, T. Transport solutions for cleaner air. Science 2016, 352, 934–936. [Google Scholar] [CrossRef] [Green Version]
- MEE. China Vehicle Environmental Management Annual Report of 2018; Ministry of Ecology and Environment of the People’s Republic of China (MEE): Beijing, China, 2018. [Google Scholar]
- MEE. China Mobile Source Environmental Management Annual Report 2021; Ministry of Ecology and Environment of the People’s Republic of China (MEE): Beijing, China, 2021. [Google Scholar]
- Roberts, S.J.; Salawitch, R.J.; Wolfe, G.M.; Marvin, M.R.; Canty, T.P.; Allen, D.J.; Hall-Quinlan, D.L.; Krask, D.J.; Dickerson, R.R. Multidecadal trends in ozone chemistry in the Baltimore-Washington Region. Atmos. Environ. 2022, 285, 119239. [Google Scholar] [CrossRef]
- Cui, H.; Posada, F.; Lv, Z.; Shao, Z.; Yang, L.; Liu, H. Cost-Benefit Assessment of the China VI Emission Standard for New Heavy-Duty Vehicles. Available online: https://theicct.org/wp-content/uploads/2021/06/China_VI_cost_benefit_assessment_20180910.pdf (accessed on 11 September 2018).
- Zhang, S.; Wu, X.; Zheng, X.; Wen, Y.; Wu, Y. Mitigation potential of black carbon emissions from on-road vehicles in China. Environ. Pollut. 2021, 278, 116746. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, S.; Hao, J.; Liu, H.; Wu, X.; Hu, J.; Walsh, M.P.; Wallington, T.J.; Zhang, K.M.; Stevanovic, S. On-road vehicle emissions and their control in China: A review and outlook. Sci. Total Environ. 2017, 574, 332–349. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Zhang, S.; Wu, Y.; Chen, Q.; Niu, T.; Huang, X.; Zhang, S.; Zhang, L.; Zhou, Y.; Hao, J. Evaluating real-world CO2 and NOX emissions for public transit buses using a remote wireless on-board diagnostic (OBD) approach. Environ. Pollut. 2016, 218, 453–462. [Google Scholar] [CrossRef]
- Wang, J.; Wang, R.; Yin, H.; Wang, Y.; Wang, H.; He, C.; Liang, J.; He, D.; Yin, H.; He, K. Assessing heavy-duty vehicles (HDVs) on-road NOx emission in China from on-board diagnostics (OBD) remote report data. Sci. Total Environ. 2022, 846, 157209. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, P.; He, L.; Yang, Y.; Liu, B.; He, W.; Cheng, Y.; Liu, Y.; Liu, S.; Hu, Q.; et al. On-board monitoring (OBM) for heavy-duty vehicle emissions in China: Regulations, early-stage evaluation and policy recommendations. Sci. Total Environ. 2020, 731, 139045. [Google Scholar] [CrossRef]
- Raza, H.; Woo, S.; Kim, H. Investigation of an ammonium carbamate–based SCR system for NOx reduction in diesel engines under transient conditions. Energy 2022, 251, 123918. [Google Scholar] [CrossRef]
- Lee, Y.; Lee, S.; Lee, S.; Choi, H.; Min, K. Characteristics of NOx emission of light-duty diesel vehicle with LNT and SCR system by season and RDE phase. Sci. Total Environ. 2021, 782, 146750. [Google Scholar] [CrossRef]
- Lemmetty, M.; Vehkamäki, H.; Virtanen, A.; Kulmala, M.; Keskinen, J. Homogeneous Ternary H2SO4-NH3-H2O Nucleation and Diesel Exhaust: A Classical Approach. Aerosol Air Qual. Res. 2007, 7, 489–499. [Google Scholar] [CrossRef] [Green Version]
- Thiruvengadam, A.; Besch, M.C.; Carder, D.K.; Oshinuga, A.; Gautam, M. Influence of Real-World Engine Load Conditions on Nanoparticle Emissions from a DPF and SCR Equipped Heavy-Duty Diesel Engine. Environ. Sci. Technol. 2012, 46, 1907–1913. [Google Scholar] [CrossRef]
- Guo, J.; Ge, Y.; Hao, L.; Tan, J.; Li, J.; Feng, X. On-road measurement of regulated pollutants from diesel and CNG buses with urea selective catalytic reduction systems. Atmos. Environ. 2014, 99, 1–9. [Google Scholar] [CrossRef]
- Amanatidis, S.; Ntziachristos, L.; Giechaskiel, B.; Bergmann, A.; Samaras, Z. Impact of Selective Catalytic Reduction on Exhaust Particle Formation over Excess Ammonia Events. Environ. Sci. Technol. 2014, 48, 11527–11534. [Google Scholar] [CrossRef]
- Mamakos, A.; Schwelberger, M.; Fierz, M.; Giechaskiel, B. Effect of selective catalytic reduction on exhaust nonvolatile particle emissions of Euro VI heavy-duty compression ignition vehicles. Aerosol Sci. Technol. 2019, 53, 898–910. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Wang, B.; Guo, Z.; Wang, B.; Zhang, Z.; Ma, X.; Chang, C.-T.; Wang, P.; He, X.; Sun, X.; et al. Experimental investigation of urea injection strategy for close-coupled SCR aftertreatment system to meet ultra-low NOx emission regulation. Appl. Therm. Eng. 2022, 205, 117994. [Google Scholar] [CrossRef]
- Salvachúa, V.; Checa, A. CITA-Applus+ Urea Emulator Emission Tampering. Available online: https://unece.org/sites/default/files/2022-01/GRPE-85-31e.pdf (accessed on 13 January 2022).
- Shen, X.; Lv, T.; Zhang, X.; Cao, X.; Li, X.; Wu, B.; Yao, X.; Shi, Y.; Zhou, Q.; Chen, X.; et al. Real-world emission characteristics of black carbon emitted by on-road China IV and China V diesel trucks. Sci. Total Environ. 2021, 799, 149435. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, S.; Wu, Y.; Li, Z.; Zhou, Y.; Fu, L.; Hao, J. Real-world emissions and fuel consumption of diesel buses and trucks in Macao: From on-road measurement to policy implications. Atmos. Environ. 2015, 120, 393–403. [Google Scholar] [CrossRef]
- Järvinen, A.; Aitomaa, M.; Rostedt, A.; Keskinen, J.; Yli-Ojanperä, J. Calibration of the new electrical low pressure impactor (ELPI+). J. Aerosol Sci. 2014, 69, 150–159. [Google Scholar] [CrossRef] [Green Version]
- Dekati Ltd. The Dekati Engine Exhaust Diluter DEED. Available online: https://www.dekati.com/wp-content/uploads/dekati_deed_brochure.pdf (accessed on 13 January 2021).
- EPA. Exhaust Emission Rates for Heavy-Duty On-Road Vehicles in MOVES2014; EPA: Washington, DC, USA, 2015. [Google Scholar]
- Damma, D.; Ettireddy, P.; Reddy, B.; Smirniotis, P. A Review of Low Temperature NH3-SCR for Removal of NOx. Catalysts 2019, 9, 349. [Google Scholar] [CrossRef] [Green Version]
- Musculus, M.P.B. Measurements of the Influence of Soot Radiation on In-Cylinder Temperatures and Exhaust NOx in a Heavy-Duty DI Diesel Engine. SAE Trans. 2005, 114, 845–866. [Google Scholar] [CrossRef]
- Herner, J.D.; Hu, S.; Robertson, W.H.; Huai, T.; Chang, M.-C.O.; Rieger, P.; Ayala, A. Effect of Advanced Aftertreatment for PM and NOx Reduction on Heavy-Duty Diesel Engine Ultrafine Particle Emissions. Environ. Sci. Technol. 2011, 45, 2413–2419. [Google Scholar] [CrossRef]
- Saari, S.; Karjalainen, P.; Ntziachristos, L.; Pirjola, L.; Matilainen, P.; Keskinen, J.; Rönkkö, T. Exhaust particle and NOx emission performance of an SCR heavy duty truck operating in real-world conditions. Atmos. Environ. 2016, 126, 136–144. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Melas, A.; Martini, G.; Dilara, P.; Ntziachristos, L. Revisiting Total Particle Number Measurements for Vehicle Exhaust Regulations. Atmosphere 2022, 13, 155. [Google Scholar] [CrossRef]
- Ciardelli, C.; Nova, I.; Tronconi, E.; Chatterjee, D.; Bandl-Konrad, B.; Weibel, M.; Krutzsch, B. Reactivity of NO/NO2–NH3 SCR system for diesel exhaust aftertreatment: Identification of the reaction network as a function of temperature and NO2 feed content. Appl. Catal. B Environ. 2007, 70, 80–90. [Google Scholar] [CrossRef]
- Koebel, M.; Madia, G.; Elsener, M. Selective catalytic reduction of NO and NO2 at low temperatures. Catal. Today 2002, 73, 239–247. [Google Scholar] [CrossRef]
- Shao, C.; Campuzano, F.; Zhai, Y.; Wang, H.; Zhang, W.; Sarathy, S.M. Effects of ammonia addition on soot formation in ethylene laminar premixed flames. Combust. Flame 2022, 235, 111698. [Google Scholar] [CrossRef]
- Yang, Z.; Liu, Y.; Wu, L.; Martinet, S.; Zhang, Y.; Andre, M.; Mao, H. Real-world gaseous emission characteristics of Euro 6b light-duty gasoline- and diesel-fueled vehicles. Transp. Res. Part D Transp. Environ. 2020, 78, 102215. [Google Scholar] [CrossRef]
Parameters | Truck |
---|---|
Vehicle brand | Jiefang |
Vehicle type | Box stake |
Fuel type | Diesel |
Gross/Curb weight (t) | 31.0/12.7 |
Displacement (L) | 7.7 |
After-treatment | SCR |
Emission standard | China IV |
Model year | 2016 |
Odometer (km) | 185,205 |
Gear | manual 8 |
Parameters | Urea State | Urban | Rural | Highway | Whole Trip |
---|---|---|---|---|---|
Trip distance (km) | with UR | 5.5 ± 0.2 | 25.9 ± 1.0 | 19.5 ± 0.2 | 50.9 ± 0.6 |
without UR | 5.2 ± 0.1 | 26.1 ± 0.7 | 19.7 ± 0.7 | 51.2 ± 0.3 | |
Avg. speed (km/h) | with UR | 10.7 ± 0 | 44.9 ± 0.9 | 77.2 ± 5.0 | 37.8 ± 1.3 |
without UR | 10.4 ± 0.7 | 44.5 ± 1.2 | 80.4 ± 1.3 | 38.2 ± 0.8 | |
Avg. RPA (m/s2) | with UR | 0.17 ± 0.04 | 0.09 ± 0.01 | 0.04 ± 0 | 0.08 ± 0.01 |
without UR | 0.19 ± 0.02 | 0.09 ± 0.01 | 0.05 ± 0 | 0.08 ± 0.01 | |
Idle (%) | with UR | 30.0 ± 1.5 | 0 | 0 | 11.6 ± 0.9 |
without UR | 27.9 ± 1.0 | 0 | 0 | 10.6 ± 1.2 | |
Acceleration (%) | with UR | 29.7 ± 4.6 | 28.8 ± 3.0 | 11.2 ± 1.6 | 25.9 ± 3.5 |
without UR | 31.7 ± 1.2 | 28.1 ± 4.7 | 11.6 ± 0.2 | 26.3 ± 2.1 | |
Cruise (%) | with UR | 17.8 ± 5.9 | 48.4 ± 4.5 | 77.8 ± 1.1 | 42.1 ± 4.3 |
without UR | 14.5 ± 2.3 | 49.3 ± 8.8 | 77.5 ± 0.6 | 41.5 ± 4.9 | |
Deceleration (%) | with UR | 22.6 ± 2.7 | 22.9 ± 1.5 | 11.0 ± 0.4 | 20.6 ± 1.8 |
without UR | 26.0 ± 0.1 | 22.7 ± 4.2 | 11.0 ± 0.5 | 21.7 ± 1.6 |
Road Type | Urea State | CO2 (g/km) | NO (g/km) | NO2 (mg/km) | NOx (g/km) |
---|---|---|---|---|---|
Highway | with UR | 726.4 ± 52.5 | 10.6 ± 1.3 | 102.7 ± 9.0 | 10.7 ± 1.3 |
without UR | 726.6 ± 6.6 | 2.2 ± 0.1 | 32.9 ± 8.9 | 2.2 ± 0.1 | |
IR (%) | 0 | 385.0 | 212.2 | 382.4 | |
Rural | with UR | 770.9 ± 14.9 | 10.9 ± 0.1 | 106.9 ± 2.9 | 11 ± 0.1 |
without UR | 771.5 ± 23.6 | 6.5 ± 0.2 | 54.9 ± 6.9 | 6.5 ± 0.2 | |
IR (%) | −0.1 | 69.2 | 94.5 | 69.5 | |
Urban | with UR | 1430.3 ± 62.9 | 21.6 ± 0.4 | 277.7 ± 10 | 21.9 ± 0.4 |
without UR | 1506.9 ± 86.5 | 16.9 ± 0.7 | 160.3 ± 20.8 | 17.1 ± 0.6 | |
IR (%) | −5.1 | 27.9 | 73.2 | 28.3 | |
Whole trip | with UR | 825.4 ± 30.3 | 12.0 ± 0.6 | 123.7 ± 4 | 12.1 ± 0.6 |
without UR | 828.0 ± 17.1 | 5.9 ± 0.1 | 56.8 ± 10.3 | 5.9 ± 0.1 | |
IR (%) | −0.3 | 104.0 | 117.7 | 104.1 |
Road Type | Urea State | Total <23 nm PN (×1013 #/km) | Solid >23 nm PN (×1013 #/km) | PN2.5 (×1013 #/km) |
---|---|---|---|---|
Highway | with UR | 1.4 ± 0.1 | 2.8 ± 0.1 | 4.2 ± 0.1 |
without UR | 2.2 ± 0.4 | 3.4 ± 0.4 | 5.5 ± 0.8 | |
DR (%) | 36.9 | 16.9 | 24.7 | |
Rural | with UR | 1.7 ± 0.2 | 4.2 ± 0.9 | 5.9 ± 1.1 |
without UR | 3.1 ± 0.5 | 5.2 ± 0.8 | 8.1 ± 1.3 | |
DR (%) | 45.8 | 19.2 | 27.3 | |
Urban | with UR | 2.9 ± 0.2 | 6.9 ± 2.3 | 9.8 ± 2.1 |
without UR | 7.9 ± 0.1 | 13.8 ± 0.3 | 21.7 ± 0.5 | |
DR (%) | 63.1 | 50.4 | 55.0 | |
Whole trip | with UR | 1.7 ± 0.1 | 4.0 ± 0.8 | 5.6 ± 0.8 |
without UR | 3.0 ± 0.7 | 4.8 ± 1.0 | 7.8 ± 1.7 | |
DR (%) | 43.3 | 18.4 | 27.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Fang, M.; Yang, Z.; Lv, Z.; Wei, N.; Yan, F.; Mao, H. Impact of Illegal Application of Urea Regulator on Real-World Exhaust Nitrogen Oxygen and Particle Number Emissions. Atmosphere 2022, 13, 1739. https://doi.org/10.3390/atmos13101739
Li J, Fang M, Yang Z, Lv Z, Wei N, Yan F, Mao H. Impact of Illegal Application of Urea Regulator on Real-World Exhaust Nitrogen Oxygen and Particle Number Emissions. Atmosphere. 2022; 13(10):1739. https://doi.org/10.3390/atmos13101739
Chicago/Turabian StyleLi, Jingyuan, Maodong Fang, Zhiwen Yang, Zongyan Lv, Ning Wei, Fuwu Yan, and Hongjun Mao. 2022. "Impact of Illegal Application of Urea Regulator on Real-World Exhaust Nitrogen Oxygen and Particle Number Emissions" Atmosphere 13, no. 10: 1739. https://doi.org/10.3390/atmos13101739
APA StyleLi, J., Fang, M., Yang, Z., Lv, Z., Wei, N., Yan, F., & Mao, H. (2022). Impact of Illegal Application of Urea Regulator on Real-World Exhaust Nitrogen Oxygen and Particle Number Emissions. Atmosphere, 13(10), 1739. https://doi.org/10.3390/atmos13101739