Model the Relationship of NH3 Emission with Attributing Factors from Rice Fields in China: Ammonia Mitigation Potential Using a Urease Inhibitor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Synthesis
2.1.1. Data Collection
2.1.2. Analysis of Influencing Factors of NH3 Loss from Rice
2.2. Soil Incubation
2.2.1. Soil Sampling and Pre-Incubation
2.2.2. Fertilizer Application
2.2.3. NH3 Measurement
2.2.4. Analysis of Factors Influencing NH3 Loss
3. Results
3.1. NH3 Loss from Rice Production in China
3.2. NH3 Loss and Reduction Potential in Paddy Soils
4. Discussion
4.1. NH3 Loss from Paddy Rice in China and Controlling Factors
4.2. Reduction in NH3 Losses Achieved with a Urease Inhibitor and Influencing Factors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, H.; Zhang, D.; Zhang, Y.; Zhai, L.; Yin, B.; Zhou, F.; Geng, Y.; Pan, J.; Luo, J.; Gu, B.; et al. Ammonia emissions from paddy fields are underestimated in China. Environ. Pollut. 2018, 235, 482–488. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.M.; Li, S.J.; Shi, W.M.; Zhang, H.L.; Fang, F.; Wang, G.X.; Zhang, L.M. Quantitatively ranking the influencing factors of ammonia volatilization from paddy soils by grey relational entropy. Environ. Sci. Pollut. Res. Int. 2020, 27, 2319–2327. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Zhao, Y.; Wen, Z.; Chang, Y.; Pan, Y.; Sun, Y.; Ma, X.; Sha, Z.; Li, Z.; Kang, J.; et al. Increasing importance of ammonia emission abatement in PM2.5 pollution control. Sci. Bull. 2022, 67, 1745–1749. [Google Scholar] [CrossRef] [PubMed]
- Clark, C.M.; Tilman, D. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature 2008, 451, 712–715. [Google Scholar] [CrossRef] [PubMed]
- Bergstrom, A.-K.; Jansson, M. Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Glob. Change Biol. 2006, 12, 635–643. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, Y.; Han, W.; Tang, A.; Shen, J.; Cui, Z.; Vitousek, P.; Erisman, J.W.; Goulding, K.; Christie, P.; et al. Enhanced nitrogen deposition over China. Nature 2013, 494, 459–462. [Google Scholar] [CrossRef]
- Xu, J.; Peng, S.; Yang, S.; Wang, W. Ammonia volatilization losses from a rice paddy with different irrigation and nitrogen managements. Agric. Water Manag. 2012, 104, 184–192. [Google Scholar] [CrossRef]
- Deng, J.; Zhou, Z.; Zhu, B.; Zheng, X.; Li, C.; Wang, X.; Jian, Z. Modeling nitrogen loading in a small watershed in southwest China using a DNDC model with hydrological enhancements. Biogeosciences 2011, 8, 2999–3009. [Google Scholar] [CrossRef] [Green Version]
- Ma, R.; Zou, J.; Han, Z.; Yu, K.; Wu, S.; Li, Z.; Liu, S.; Niu, S.; Horwath, W.R.; Zhu-Barker, X. Global soil-derived ammonia emissions from agricultural nitrogen fertilizer application: A refinement based on regional and crop-specific emission factors. Glob. Change Biol. 2020, 27, 855–867. [Google Scholar] [CrossRef]
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef]
- Zhou, F.; Ciais, P.; Hayashi, K.; Galloway, J.; Kim, D.G.; Yang, C.; Li, S.; Liu, B.; Shang, Z.; Gao, S. Re-estimating NH3 Emissions from Chinese Cropland by a New Nonlinear Model. Environ. Sci. Technol. 2016, 50, 564–572. [Google Scholar] [CrossRef]
- Haden, V.R.; Xiang, J.; Peng, S.; Ketterings, Q.M.; Hobbs, P.; Duxbury, J.M. Ammonia toxicity in aerobic rice: Use of soil properties to predict ammonia volatilization following urea application and the adverse effects on germination. Eur. J. Soil Sci. 2011, 62, 551–559. [Google Scholar] [CrossRef]
- Zhan, X.; Adalibieke, W.; Cui, X.; Winiwarter, W.; Reis, S.; Zhang, L.; Bai, Z.; Wang, Q.; Huang, W.; Zhou, F. Improved Estimates of Ammonia Emissions from Global Croplands. Environ. Sci. Technol. 2021, 55, 1329–1338. [Google Scholar] [CrossRef] [PubMed]
- Abalos, D.; Jeffery, S.; Sanz-Cobena, A.; Guardia, G.; Vallejo, A. Meta-analysis of the effect of urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. Agric. Ecosyst. Environ. 2014, 189, 136–144. [Google Scholar] [CrossRef]
- Sha, Z.; Liu, H.; Wang, J.; Ma, X.; Liu, X.; Misselbrook, T. Improved soil-crop system management aids in NH3 emission mitigation in China. Environ. Pollut. 2021, 289, 117844. [Google Scholar] [CrossRef] [PubMed]
- Cantarella, H.; Otto, R.; Soares, J.R.; Silva, A.G.B. Agronomic efficiency of NBPT as a urease inhibitor: A review. J. Adv. Res. 2018, 13, 19–27. [Google Scholar] [CrossRef]
- Nakagawa, S.; Schielzeth, H.; O’Hara, R.B. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- Sha, Z.; Lv, T.; Staal, M.; Ma, X.; Wen, Z.; Li, Q.; Pasda, G.; Misselbrook, T.; Liu, X. Effect of combining urea fertilizer with P and K fertilizers on the efficacy of urease inhibitors under different storage conditions. J. Soils Sediments 2020, 20, 2130–2140. [Google Scholar] [CrossRef]
- Wang, C.; Liu, D.; Bai, E. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biol. Biochem. 2018, 120, 126–133. [Google Scholar] [CrossRef]
- Byrne, M.P.; Tobin, J.T.; Forrestal, P.J.; Danaher, M.; Nkwonta, C.G.; Richards, K.; Cummins, E.; Hogan, S.A.; O’Callaghan, T.F. Urease and Nitrification Inhibitors—As Mitigation Tools for Greenhouse Gas Emissions in Sustainable Dairy Systems: A Review. Sustainability 2020, 12, 6018. [Google Scholar] [CrossRef]
- Jiang, Y.; Liang, Y.; Li, C.; Wang, F.; Sui, Y.; Suvannang, N.; Zhou, J.; Sun, B. Crop rotations alter bacterial and fungal diversity in paddy soils across East Asia. Soil Biol. Biochem. 2016, 95, 250–261. [Google Scholar] [CrossRef] [Green Version]
- Xing, G.X.; Shi, S.L.; Shen, G.Y.; Du, L.J.; Xiong, Z.Q. Nitrous oxide emissions from paddy soil in three rice-based cropping systems in China. Nutr. Cycl. Agroecosyst. 2002, 64, 135–143. [Google Scholar] [CrossRef]
- Sha, Z.; Li, Q.; Lv, T.; Misselbrook, T.; Liu, X. Response of ammonia volatilization to biochar addition: A meta-analysis. Sci. Total Environ. 2019, 655, 1387–1396. [Google Scholar] [CrossRef] [PubMed]
- Sommer, S.G.; Schjoerring, J.K.; Denmead, O.T. Ammonia Emission from Mineral Fertilizers and Fertilized Crops. Adv. Agron. 2004, 82, 557–622. [Google Scholar] [CrossRef]
- Thind, H.S.; Rowell, D.L. Effects of algae and fertilizer-nitrogen on pH, Eh and depth of aerobic soil in laboratory columns of a flooded sandy loam. Biol. Fertil. Soils 1999, 28, 162–168. [Google Scholar] [CrossRef]
- Thind, H.S.; Rowell, D.L. Transformations of nitrogen-15-labelled urea in a flooded soil as affected by floodwater algae and green manure in a growth chamber. Biol. Fertil. Soils 2000, 31, 53–59. [Google Scholar] [CrossRef]
- Xia, L.; Lam, S.K.; Chen, D.; Wang, J.; Tang, Q.; Yan, X. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Glob. Chang. Biol. 2017, 23, 1917–1925. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sha, Z.; Ma, X.; Wang, J.; Li, Y.; Xu, W.; Tang, A.; Goulding, K.; Liu, X. Model the Relationship of NH3 Emission with Attributing Factors from Rice Fields in China: Ammonia Mitigation Potential Using a Urease Inhibitor. Atmosphere 2022, 13, 1750. https://doi.org/10.3390/atmos13111750
Sha Z, Ma X, Wang J, Li Y, Xu W, Tang A, Goulding K, Liu X. Model the Relationship of NH3 Emission with Attributing Factors from Rice Fields in China: Ammonia Mitigation Potential Using a Urease Inhibitor. Atmosphere. 2022; 13(11):1750. https://doi.org/10.3390/atmos13111750
Chicago/Turabian StyleSha, Zhipeng, Xin Ma, Jingxia Wang, Yunzhe Li, Wen Xu, Aohan Tang, Keith Goulding, and Xuejun Liu. 2022. "Model the Relationship of NH3 Emission with Attributing Factors from Rice Fields in China: Ammonia Mitigation Potential Using a Urease Inhibitor" Atmosphere 13, no. 11: 1750. https://doi.org/10.3390/atmos13111750
APA StyleSha, Z., Ma, X., Wang, J., Li, Y., Xu, W., Tang, A., Goulding, K., & Liu, X. (2022). Model the Relationship of NH3 Emission with Attributing Factors from Rice Fields in China: Ammonia Mitigation Potential Using a Urease Inhibitor. Atmosphere, 13(11), 1750. https://doi.org/10.3390/atmos13111750