Impact of ENSO Events on Droughts in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Meteorological Data
2.2. ENSO Index
2.2.1. Southern Oscillation Index
2.2.2. Niño3.4 Sea Surface Temperature Index
2.2.3. Multivariate ENSO Index
2.3. Method
2.3.1. Standardized Precipitation Evapotranspiration Index
2.3.2. ENSO Duration and Strength
2.3.3. Quantifying the Teleconnection Relationship between Different ENSO Indexes and SPEI
2.3.4. Spatial and Temporal Analysis of the Time-Lag Response of Drought to ENSO Events of Different Intensities
3. Results
3.1. Quantifying the Teleconnection Relationship between ENSO Indexes and SPEI in China
3.2. Identification of ENSO of Different Intensities
3.3. Impact of ENSO Strength on Drought in China
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Shao, D.; Chen, S.; Tan, X.; Gu, W.Q. Drought characteristics over China during 1980-2015. Int. J. Climatol. 2018, 38, 3532–3545. [Google Scholar] [CrossRef]
- Singh, R.M.; Shukla, P. Drought Characterization Using Drought Indices and El Niño Effects. Natl. Acad. Sci. Lett. 2020, 43, 339–342. [Google Scholar] [CrossRef]
- Gupta, V.; Jain, M.K. Unravelling the teleconnections between ENSO and dry/wet conditions over India using nonlinear Granger causality. Atmos. Res. 2021, 247, 105168. [Google Scholar] [CrossRef]
- Yao, J.; Tuoliewubieke, D.; Chen, J.; Huo, W.H.; Wen, F.G. Identification of Drought Events and Correlations with Large-Scale Ocean–Atmospheric Patterns of Variability, A Case Study in Xinjiang, China. Atmosphere 2019, 10, 94. [Google Scholar] [CrossRef] [Green Version]
- Abiy, A.Z.; Melesse, A.M.; Abtew, W. Teleconnection of Regional Drought to ENSO, PDO, and AMO, Southern Florida and the Everglades. Atmosphere 2019, 10, 295. [Google Scholar] [CrossRef] [Green Version]
- Harger, J.R.E. ENSO variations and drought occurrence in Indonesia and the Philippines. Atmos. Environ. 1995, 16, 1943–1955. [Google Scholar] [CrossRef]
- Benjamin, F.Z. Madden-Julian Oscillation impacts on tropical African precipitation. Atmos. Res. 2017, 184, 88–102. [Google Scholar]
- Pavia, E.G.; Graef, F.; Fuentes, F.R. Recent ENSO–PDO precipitation relationships in the Mediterranean California border region. Atmos. Sci. Lett. 2016, 17, 280–285. [Google Scholar] [CrossRef] [Green Version]
- Supari, T.F.; Salimun, E.; Aldrian, E.; Sopaheluwakan, A.; Juneng, L. ENSO modulation of seasonal rainfall and extremes in Indonesia. Clim. Dyn. 2018, 51, 2559–2580. [Google Scholar] [CrossRef]
- McCabe, G.J.; Dettinger, M.D. Decadal variations in the strength of ENSO teleconnections with precipitation in the western United States. Int. J. Climatol. 1999, 19, 1399–1410. [Google Scholar] [CrossRef]
- Li, Y.; Ma, B.; Feng, J.; Lu, Y. Influence of the strongest central Pacific El Niño–Southern Oscillation events on the precipitation in eastern China. Int. J. Climatol. 2019, 39, 3076–3090. [Google Scholar] [CrossRef]
- Manatsa, D.; Unganai, L.; Gadzirai, C.; Behera, S.K. An innovative tailored seasonal rainfall forecasting production in Zimbabwe. Nat. Hazards 2012, 64, 1187–1207. [Google Scholar] [CrossRef]
- Oertel, M.; Meza, F.J.; Gironás, J. Observed trends and relationships between ENSO and standardized hydrometeorological drought indices in central Chile. Hydrol. Process. 2019, 34, 159–174. [Google Scholar] [CrossRef]
- Fan, L.; Guan, H.; Cai, W.; Rofe, C.P.; Xu, J.J. A 7-Year Lag Precipitation Teleconnection in South Australia and Its Possible Mechanism. Front. Earth Sci. 2020, 8, 1–12. [Google Scholar] [CrossRef]
- Le, M.H.; Perez, G.C.; Solomatine, D.; Nguyen, L.B. Meteorological Drought Forecasting Based on Climate Signals Using Artificial Neural Network—A Case Study in Khanhhoa Province Vietnam. Procedia Eng. 2016, 154, 1169–1175. [Google Scholar] [CrossRef] [Green Version]
- Irannezhad, M.; Liu, J.; Chen, D.; Naturvetenskapliga, F. Extreme precipitation variability across the Lancang-Mekong River Basin during 1952–2015 in relation to teleconnections and summer monsoons. Int. J. Climatol. 2021, 42, 2614–2638. [Google Scholar] [CrossRef]
- Khadr, M. Forecasting of meteorological drought using Hidden Markov Model case study, The upper Blue Nile river basin, Ethiopia. Ain Shams Eng. J. 2016, 7, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Wang, W.; Shao, Q.; Rong, Y.S.; Xing, W.Q.; Liu, C. Influence of mature El Niño-Southern Oscillation phase on seasonal precipitation and streamflow in the Yangtze River Basin, China. Int. J. Climatol. 2020, 40, 3885–3905. [Google Scholar] [CrossRef]
- Huang, S.; Huang, Q.; Chang, J.; Leng, G.Y. Linkages between hydrological drought, climate indices and human activities, a case study in the Columbia River basin. Int. J. Climatol. 2016, 36, 280–290. [Google Scholar] [CrossRef]
- McPhaden, M.J.; Zebiak, S.E.; Glantz, M.H. ENSO as an Integrating Concept in Earth Science. Science 2006, 314, 1740–1745. [Google Scholar] [CrossRef] [Green Version]
- Chiew, F.H.S.; Piechota, T.C.; Dracup, J.A.; McMahon, T.A. EI Nino/Southern Oscillation and Australian rainfall, streamflow and drought, Links and potential for forecasting. J. Hydrol. 1998, 204, 138–149. [Google Scholar] [CrossRef]
- Dewi, G.C.K.; Nigel, J.T. ENSO Rainfall Variabiliity and Impacts on Crop Production in Indonesia. Phys. Geogr. 1999, 20, 508–519. [Google Scholar]
- Özger, M.; Mishra, A.K.; Singh, V.P. Low frequency drought variability associated with climate indices. J. Hydrol. 2009, 364, 152–162. [Google Scholar] [CrossRef]
- Zambrano Mera, Y.E.; Rivadeneira Vera, J.F.; Pérez-Martín, M.Á. Linking El Niño Southern Oscillation for early drought detection in tropical climates, The Ecuadorian coast. Sci. Total Environ. 2018, 643, 193–207. [Google Scholar] [CrossRef] [PubMed]
- Ren, W.; Wang, Y.; Li, J.; Feng, P.; Smith, R.J. Drought forecasting in Luanhe River basin involving climatic indices. Theor. Appl. Climatol. 2017, 130, 1133–1148. [Google Scholar] [CrossRef]
- Potop, V.; Boroneanţ, C.; Možný, M. Observed spatiotemporal characteristics of drought on various time scales over the Czech Republic. Theor. Appl. Climatol. 2014, 115, 563–581. [Google Scholar] [CrossRef]
- Kiem, A.S.; Franks, S.W. On the identification of ENSO-induced rainfall and runoff variability, a comparison of methods and indices. Hydrol. Sci. J. 2001, 46, 715–727. [Google Scholar] [CrossRef]
- Lyon, B. The strength of El Niño and the spatial extent of tropical drought. Geophys. Res. Lett. 2004, 31, 21204–21208. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, N.B.; Lopes, A.P.; Dalagnol, R.; Wu, J.; Pinho, D.M.; Nelson, B.W. Both near-surface and satellite remote sensing confirm drought legacy effect on tropical forest leaf phenology after 2015/2016 ENSO drought. Remote Sens. Environ. 2020, 237, 111489. [Google Scholar] [CrossRef]
- Ionita, M.; Tallaksen, L.M.; Kingston, D.G.; Stagge, J.H.; Laaha, G.; Van, L.; Henny, A.J.; Scholz, P.; Chelcea, S.M.; Haslinger, K. The European 2015 drought from a climatological perspective. Hydrol. Earth Syst. Sci. 2017, 21, 1397–1419. [Google Scholar] [CrossRef] [Green Version]
- Ryu, J.H.; Svoboda, M.D.; Lenters, J.D.; Tadesse, T.; Knutson, C.L. Potential extents for ENSO-driven hydrologic drought forecasts in the United States. Clim. Chang. 2010, 101, 575–597. [Google Scholar] [CrossRef]
- Blamey, R.C.; Kolusu, S.R.; Mahlalela, P.; Rezaie, H.; Carlo, D.M. The role of regional circulation features in regulating El Niño climate impacts over southern Africa, A comparison of the 2015/2016 drought with previous events. Int. J. Climatol. 2018, 38, 4276–4295. [Google Scholar] [CrossRef]
- Ma, F.; Ye, A.; You, J.; Duan, Q. 2015–16 floods and droughts in China, and its response to the strong El Nino. Sci. Total Environ. 2018, 62, 1473–1484. [Google Scholar] [CrossRef]
- Jimenez-Munoz, J.C.; Mattar, C.; Barichivich, J.; Santamaria-Artigas, A.; Takahashi, K.; Malhi, Y.; Sobrino, J.A.; Schrier, G. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Nino 2015–2016. Sci. Rep. 2016, 6, 33130. [Google Scholar] [CrossRef] [Green Version]
- Barlow, M.A.; Nigam, S.; Berbery, E.H. ENSO, Pacific decadal variability, and U.S. summertime precipitation, drought, and stream flow. J. Clim. 2001, 9, 2105–2128. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, G. Analysis of drought hazards in North China, distribution and interpretation. Nat. Hazards 2013, 65, 279–294. [Google Scholar] [CrossRef]
- Ren, H.; Zheng, F.; Luo, J.; Wang, R.; Liu, M.H.; Zhang, W.J.; Zhou, T.J.; Zhou, G.Q. A Review of Research on Tropical Air-Sea Interaction, ENSO Dynamics, and ENSO Prediction in China. J. Meteorol. Res. 2020, 34, 43–62. [Google Scholar] [CrossRef]
- Liang, L.; Zhao, S.; Qin, Z.; He, K.X.; Chen, C.; Luo, Y.X.; Zhou, X.D. Drought Change Trend Using MODIS TVDI and Its Relationship with Climate Factors in China from 2001 to 2010. J. Integr. Agric. 2014, 13, 1501–1508. [Google Scholar] [CrossRef]
- Jin, X.; Qiang, H.; Zhao, L.; Jiang, S.Z.; Cui, N.B.; Cao, Y.; Feng, Y. SPEI-based analysis of spatio-temporal variation characteristics for annual and seasonal drought in the Zoige Wetland, Southwest China from 1961 to 2016. Theor. Appl. Climatol. 2020, 13, 711–725. [Google Scholar] [CrossRef]
- Li, L.; She, D.; Zheng, H.; Lin, P.R.; Yang, Z.L. Elucidating Diverse Drought Characteristics from Two Meteorological Drought Indices SPI and SPEI in China. J. Hydrometeorol. 2020, 21, 1513–1530. [Google Scholar] [CrossRef]
- Sun, P.; Zhang, Q.; Cheng, C.; Singh, V.P.; Shi, P.J. ENSO-induced drought hazards and wet spells and related agricultural losses across Anhui province, China. Nat. Hazards 2017, 89, 963–983. [Google Scholar] [CrossRef]
- Liu, W.; Zhu, S.; Huang, Y.; Wan, Y.F.; Wu, B.; Liu, L.N. Spatiotemporal Variations of Drought and Their Teleconnections with Large-Scale Climate Indices over the Poyang Lake Basin, China. Sustainability 2020, 12, 3526. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, P.; Zhou, T.; Xiao, C. ENSO Transition from La Niña to El Niño Drives Prolonged Spring–Summer Drought over North China. J. Clim. 2018, 31, 3509–3523. [Google Scholar] [CrossRef]
- Wang, L.; Yuan, X.; Xie, Z.; Wu, P.; Li, Y. Increasing flash droughts over China during the recent global warming hiatus. Sci. Rep. 2016, 6, 30571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, J.; Mu, L.; Wang, L.; Ranjan, R.; Zomaya, A.Y. Temporal Convolutional Networks for the Advance Prediction of ENSO. Sci. Rep. 2020, 10, 8055. [Google Scholar] [CrossRef]
- Lü, A.; Zhu, W.; Jia, S. Assessment of the sensitivity of vegetation to El-Niño/Southern Oscillation events over China. Adv. Space Res. 2012, 50, 1362–1373. [Google Scholar] [CrossRef]
- Zhang, R.; Yu, Y.; Song, Z.; Ren, H.L.; Tang, Y.M.; Qiao, F.L.; Wu, T.W.; Gao, C.; Hu, J.Y.; Tian, F.; et al. A review of progress in coupled ocean-atmosphere model developments for ENSO studies in China. J. Oceanol. Limnol. 2020, 384, 930–961. [Google Scholar] [CrossRef]
- Hanley, D.E.; Bourassa, M.A.; Obrien, J.J.; Smith, S.R.; Spade, E.R. A Quantitative Evaluation of ENSO Indices. J. Clim. 2003, 16, 1249–1258. [Google Scholar] [CrossRef]
- Ren, H.; Lu, B.; Wan, J.; Tian, B.; Zhang, P.Q. Identification Standard for ENSO Events and Its Application to Climate Monitoring and Prediction in China. J. Meteorol. Res. 2018, 32, 923–936. [Google Scholar] [CrossRef]
- Wu, R.; Hu, Z.; Kirtman, B.P. Evolution of ENSO-Related Rainfall Anomalies in East Asia. J. Clim. 2003, 16, 3742–3758. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, J.; Guo, E.; Dong, Z.H.; Quan, L. Estimation of Variability Characteristics of Regional Drought during 1964–2013 in Horqin Sandy Land, China. Water 2016, 8, 543. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Wang, F. China can lead on climate change. Science 2017, 357, 761–764. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.X.; Takeuchi, K.; Ishidaira, H. Correlation between El Niño–Southern OscillationENSO and precipitation in South-east Asia and the Pacific region. Hydrol. Process. 2004, 181, 107–123. [Google Scholar] [CrossRef]
- Tramblay, Y.; Hertig, E. Modelling extreme dry spells in the Mediterranean region in connection with atmospheric circulation. Atmos. Res. 2018, 202, 40–48. [Google Scholar] [CrossRef]
- Wang, S.; Yuan, X.; Li, Y. Does a Strong El Niño Imply a Higher Predictability of Extreme Drought? Sci. Rep. 2017, 7, 40741. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Yuan, Z.; Sun, K.K.; Lin, Y.R. Evolution characteristics research on summerautumn consistent drought of Poyang Lake based on the copula in the changing environment. IOP Conf. Ser. Earth Environ. Sci. 2022, 612, 1–9. [Google Scholar]
- Liu, Y.; Wen, Y.; Zhao, Y.; Hu, H. Analysis of Drought and Flood Variations on a 200-Year Scale Based on Historical Environmental Information in Western China. Int. J. Environ. Res. Public Health 2022, 19, 2771. [Google Scholar] [CrossRef]
- Zhou, B.T.; Xu, Y.; Wu, J.; Dong, S.Y.; Shi, Y. Changes in temperature and precipitation extreme indices over China: Analysis of a high-resolution grid dataset. Int. J. Climatol. 2016, 36, 1051–1066. [Google Scholar] [CrossRef]
Temperature Zone | Dry–Wet Partition | Natural Region |
---|---|---|
I Cool Temperate Zone | A Humid Region | IA1 Daxing’an Mountains |
II Mid-Temperate Zone | A Humid Region | IIA1 Sanjiang Plain |
IIA2 East Upland Area of Northeast China | ||
IIA3 Front Mountain Plain of Eastern Northeast China | ||
B Semi-Humid Region | IIB2 Southern Daxing’an Mountains | |
IIB3 Plain and Hills Sanhe Piedmont | ||
C Semi-Arid Region | IIC1 Southwestern Songliao Plain | |
IIC2 Northern Daxing’an Mountains | ||
IIC3 Eastern Inner Mongolia Plateau | ||
D Arid Region IID3 Junggar Basin | IID1 Western Inner Mongolia Plateau and Hetao | |
IID2 Alxa and Hexi Corridor | ||
IID4 Altai Mountain and Tacheng Basin | ||
IID5 Ili River Basin | ||
III Warm Temperate Zone | A Humid Region | IIA1 Jiaodong Mountain Hills in Eastern Liaoning Province |
B Semi-Humid Region | IIIB1 Mountain and Hills in Central Shandong | |
IIIB2 North China Plain | ||
IIIB3 Mountain and Hills in North China | ||
IIIB4 Guanzhong Basin in South Shanxi | ||
C Semi-Arid Region | IIC1 Hilly and Plateau in Central Shanxi, Northern Shanxi, and Eastern Gansu | |
D Arid Region | IIID1 Tarim and Turpan Basins | |
IV Northern Subtropical Zone | A Humid Region | IVA1 South of the Huaihe River and Middle and Lower Reaches of the Yangtze River |
IVA2 Hanzhong Basin | ||
V Middle Subtropical Zone | A Humid Region | VA1 Jiangnan Hills |
VA2 Jiangnan and Nanling Mountains | ||
VA3 Guizhou Plateau | ||
VA4 Sichuan Basin | ||
VA5 Yunnan Plateau | ||
VA6 South Limb of Eastern Himalayan | ||
VI Southern Subtropical Zone | A Humid Region | VIA1 Mountain Plain in Central and Northern Taiwan |
VIA2 Hilly Plain of Fujian, Guangdong, and Guangxi | ||
VIA3 Mountain Hills in Central Yunnan | ||
VII Edge Tropical Zone | A Humid Region | VIIA1 Lowlands in Southern Taiwan |
VIIA2 Mountain Hills in Qionglei | ||
VIIA3 Valley Hills in South Yunnan | ||
VIII Central Tropical Zone | A Humid Region | VIIIA1 Qionglei Lowland and Dongsha, Zhongsha, and Xisha Islands |
IX Equatorial Tropical Zone | A Humid Region | IXA1 Nansha Islands |
HI Highland Subduction Zone | B Semi-Humid Region | HIB1 Hilly Plateau in Guoluo and Naqu |
C Semi-Arid Region | HIC1 Wide Valley of the South Qinghai Plateau | |
HIC2 Qiangtang Plateau Lake Basin | ||
D Arid Region | HID1 Plateau of Kunlun | |
HII Highland Temperate Zone | A/B Humid Region/Semi-Humid Region | HIIA/B1 High Mountains and Canyon in Eastern Sichuan and Tibet |
C Semi-Arid Region | HIIC1 Eastern Qilian Mountains | |
HIIC2 Mountain South Tibet | ||
D Arid Region | HIID1 Qaidam Basin | |
HIID2 North Limb of Kunlun Mountain | ||
HIID3 Ali Mountain |
ENSO Index | Criterion |
---|---|
Niño3.4 index | El Niño (La Niña): Maximum (Minimum) SST > 1 (<−1) standard deviation and SST > 0.5 °C (<0.5 °C) for at least 8 months |
Southern Oscillation Index (SOI) | El Niño (La Niña): five-month running mean of SOI < −0.5 (>0.5) for 5 or more consecutive months between April of the year to March of the following year (+) |
Multivariate ENSO Index (MEl) | El Niño (La Niña): five-month running mean of MEI > 0.5 (<0.5) for five or more consecutive months between April to March of the following (+) and the peak MEI > 1 (<1) |
ENSO | Time Span | Duration (Months) | Strength | ENSO | Time Span | Duration (Months) | Strength |
---|---|---|---|---|---|---|---|
El Niño | April 1982–June 1983 | 15 | 2.7 | La Niña | October 1984–June 1985 | 9 | −1.2 |
August 1986–February 1988 | 19 | 1.9 | April 1988–April 1989 | 13 | −1.5 | ||
May 1991–June 1992. | 14 | 1.9 | July 1995–February 1996 | 8 | −1.2 | ||
September 1994–March 1995 | 7 | 1.3 | June1998–January 2001 | 32 | −1.6 | ||
April 1997–April 1998 | 13 | 2.7 | October 2005–February 2006 | 5 | −0.8 | ||
May 2002–March 2003 | 11 | 1.6 | June 2007–May 2008 | 12 | −1.7 | ||
July 2004–January 2005 | 7 | 0.8 | October 2008–February 2009 | 5 | −0.8 | ||
August 2006.–January 2007 | 6 | 1.1 | May 2010–April 2011 | 12 | −1.6 | ||
June 2009–April 2010 | 11 | 1.7 | June 2011–February 2012 | 9 | −0.8 | ||
October 2014–April 2016 | 19 | 2.6 | July 2016–November 2016 | 5 | −0.66 | ||
September 2018–May 2019 | 9 | 1.4 | September 2017–February 2018 | 6 | −0.82 |
ENSO | Time Span | Duration (Months) | Strength | ENSO | Time Span | Duration (Months) | Strength |
---|---|---|---|---|---|---|---|
El Niño | June1982–July 1983 | 14 | 2.11 | La Niña | February 1985–June 1985 | 5 | −0.76 |
July 1986–January 1988 | 19 | 1.18 | June 1988–October 1989 | 17 | −1.22 | ||
September 1991–July 1992 | 14 | 1.39 | August 1995–August 1996 | 13 | −0.74 | ||
September 1992–November1993 | 15 | 1.87 | July 1998–July 2000 | 25 | −1.22 | ||
July 1994–February 1995 | 8 | 0.94 | October 2000–June 2001 | 9 | −0.74 | ||
May 1997–May 1998 | 13 | 2.10 | October 2005–April 2006 | 7 | −0.67 | ||
August 2002–March 2003 | 8 | 0.77 | June 2007–May 2009 | 24 | −1.01 | ||
August 2006–January 2007 | 6 | 0.67 | June 2010–March 2012 | 22 | −1.50 | ||
October 2009–April 2010 | 7 | 0.96 | July 2017–June 2018 | 12 | −0.77 | ||
May 2015–May 2016 | 13 | 1.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, A.; Fan, L.; Zhang, W. Impact of ENSO Events on Droughts in China. Atmosphere 2022, 13, 1764. https://doi.org/10.3390/atmos13111764
Lv A, Fan L, Zhang W. Impact of ENSO Events on Droughts in China. Atmosphere. 2022; 13(11):1764. https://doi.org/10.3390/atmos13111764
Chicago/Turabian StyleLv, Aifeng, Lei Fan, and Wenxiang Zhang. 2022. "Impact of ENSO Events on Droughts in China" Atmosphere 13, no. 11: 1764. https://doi.org/10.3390/atmos13111764
APA StyleLv, A., Fan, L., & Zhang, W. (2022). Impact of ENSO Events on Droughts in China. Atmosphere, 13(11), 1764. https://doi.org/10.3390/atmos13111764