Influencing Factors of Particulate Matter Concentration in the Metro Carriage and the Corresponding Inhalation Intake Estimation: A Field Measurement in Chengdu
Abstract
:1. Introduction
2. Methodology
2.1. Measurement Site Description
2.2. Monitoring Instruments and Experiment Design
2.3. Monitoring Process
2.4. Inhalation Intake Evaluation Method
2.5. Data Analysis
3. Results and Discussion
3.1. PM2.5 and PM10 Concentrations in the Carriage
City | Measurement Year | PM2.5 (µg/m3) | PM10 (µg/m3) | Reference | ||
---|---|---|---|---|---|---|
Mean | Range | Mean | Range | |||
Chengdu (all routes) | 2021 | 36.7 | 11–74 | 40.1 | 13–89 | This study |
Tianjin | 2021 | 23 | - | 69 | - | [54] |
Nanchang | 2019 | 179 | 72–516 | - | - | [50] |
Taipei | 2016 | 47 | 2–112 | 55 | 3–135 | [51] |
Shanghai | 2013 | 84 | - | - | - | [31] |
Seoul | 2004–2005 | 126 | 115–136 | 312 | 29–359 | [23] |
Barcelona L10 | 2014 | 26 | 20–31 | - | - | [25] |
Athens L2 | 2014 | 125 | - | - | - | [52] |
Oporto LA | 54 | - | - | - | ||
Rome | 2010 | - | - | 275 | - | [27] |
Istanbul | 2007–2008 | 73 | 22–241 | [26] | ||
Los Angeles (underground) | 2010 | 24 | 3–62 | 31 | 6–107 | [21] |
New York | 2008 | 39 | 34–44 | - | - | [55] |
Mexico | 2002 | 61 | 31–99 | - | - | [53] |
3.2. Influencing Factors
3.2.1. Underground and Overground
3.2.2. Passenger Number
3.2.3. Door Opening and Door Closing
3.3. Inhalation Intake
3.4. Reduction of In-Carriage PM Concentrations and Inhalation Intakes
3.5. Limitations
4. Conclusions
- The in-carriage PM2.5 and PM10 concentrations were in the ranges of 11–74 µg/m3 with a mean of 36.7 µg/m3 and 13–89 µg/m3 with a mean of 40.1 µg/m3, respectively.
- The in-carriage PM concentrations increased when the metro train passed from the overground area to the underground area.
- Although PM concentrations in the carriage were higher than those on the overground platforms, in-carriage PM concentrations decreased after the door was opened.
- There was no significant correlation between the passenger number and the in-carriage PM concentrations.
- The inhalation intake of PM2.5 on the route with more underground platforms was higher than that on the route with more overground platforms.
- In order to effectively reduce the PM2.5 inhaled by passengers in the metro carriage, the metro operating agency should pay more attention to the routes causing high in-carriage PM concentrations and long commuting time periods.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Sex | IR (m3/day) | ||||
---|---|---|---|---|---|
Children | Juvenile | Youth | Middle-Aged | Elderly | |
Male | 9.04 | 15.64 | 20.39 | 18.41 | 15.25 |
Female | 8.59 | 13.32 | 16.46 | 14.46 | 11.51 |
Routes | Included Platforms | Distance (km) | Number of Platforms | |
---|---|---|---|---|
Overground | Underground | |||
a | P1, P2, P3, P4 and P5 | 5.56 | 5 | 0 |
b | P3, P4, P5, P6 and P7 | 5.263 | 3 | 2 |
c | P4, P5, P6, P7 and P8 | 4.128 | 2 | 3 |
d | P6, P7, P8, P9 and P10 | 4.141 | 0 | 5 |
Routes | R10 | R11 | R12 | |||
---|---|---|---|---|---|---|
Factors | R | Sig. | R | Sig. | R | Sig. |
PM2.5 | 0.54 | 0.46 | 0.555 | 0.445 | 0.448 | 0.552 |
PM10 | 0.636 | 0.364 | 0.685 | 0.315 | 0.642 | 0.358 |
Routes | R10 | R11 | R12 | ||||||
---|---|---|---|---|---|---|---|---|---|
Factors | PM2.5 | PM10 | Number | PM2.5 | PM10 | Number | PM2.5 | PM10 | Number |
Measurement 1 | 46 | 49.3 | 43 | 48 | 51 | 51 | 48.5 | 51.3 | 48 |
Measurement 2 | 47.4 | 52.2 | 70 | 47.7 | 52.7 | 68 | 49.2 | 53.8 | 66 |
Measurement 3 | 51.9 | 58.1 | 66 | 53.9 | 62.1 | 69 | 53.3 | 58.8 | 67 |
Measurement 4 | 44.4 | 48.9 | 56 | 45.9 | 50 | 58 | 47.9 | 52.2 | 64 |
Pollutant | Route | Average | Median | Range |
---|---|---|---|---|
PM2.5 | a | 48.3 | 48 | 43–55 |
b | 49.1 | 50 | 43–55 | |
c | 52.7 | 52 | 45–62 | |
d | 55.1 | 53 | 49–74 |
Experiment and Estimation | Date | Ambient Atmospheric PM Concentrations (μg/m3) | |
---|---|---|---|
PM2.5 | PM10 | ||
E1 | 4.20 | 23 | 41 |
4.28 | 25 | 59 | |
4.29 | 25 | 55 | |
4.30 | 47 | 82 | |
5.1 | 50 | 79 | |
5.2 | 57 | 87 | |
E2 | 5.15 | 13 | 24 |
5.16 | 22 | 40 | |
5.18 | 26 | 39 | |
5.26 | 22 | 36 | |
6.4 | 20 | 48 | |
6.8 | 23 | 36 | |
6.11 | 30 | 47 | |
6.15 | 22 | 33 | |
6.16 | 16 | 23 | |
6.17 | 10 | 17 | |
6.18 | 19 | 35 | |
6.25 | 22 | 31 | |
E3 | 5.31 | 43 | 68 |
6.1 | 37 | 64 | |
6.2 | 37 | 61 | |
Estimation of inhalation intakes | 4.20 * | 23 | 41 |
4.28 * | 25 | 59 | |
4.29 * | 25 | 55 | |
4.30 * | 47 | 82 | |
5.1 * | 50 | 79 | |
5.2 * | 57 | 87 | |
5.8 | 44 | 66 | |
5.10 | 53 | 76 | |
5.18 * | 26 | 39 | |
5.19 | 46 | 63 |
References
- Chang, Y.S.; Jo, S.J.; Lee, Y.-T.; Lee, Y. Population Density or Populations Size. Which Factor Determines Urban Traffic Congestion? Sustainability 2021, 13, 4280. [Google Scholar] [CrossRef]
- Jain, A.; Yadav, S.; Vij, S.; Kumar, Y.; Tayal, D.K. A Novel Self-Organizing Approach to Automatic Traffic Light Management System for Road Traffic Network. Wirel. Pers. Commun. 2020, 110, 1303–1321. [Google Scholar] [CrossRef]
- Li, W.; Feng, W.; Yuan, H.-z. Multimode Traffic Travel Behavior Characteristics Analysis and Congestion Governance Research. J. Adv. Transp. 2020, 2020, 6678158. [Google Scholar] [CrossRef]
- Lin, D.; Nelson, J.D.; Beecroft, M.; Cui, J. An overview of recent developments in China’s metro systems. Tunn. Undergr. Space Technol. 2021, 111, 103783. [Google Scholar] [CrossRef]
- Pang, L.; Wang, X.; Qu, H.; Li, B.; Tian, Q. Study on forecasting the parameters of gas environment of metro station. Energy Built Environ. 2021, 2, 374–379. [Google Scholar] [CrossRef]
- Zhang, W.J.; Zhao, H.; Zhao, A.; Lin, J.Q.; Zhou, R. Current Status, Challenges and Resilient Response to Air Pollution in Urban Subway. Atmosphere 2019, 10, 472. [Google Scholar] [CrossRef] [Green Version]
- CAM (China Association of Metros). Statistics and Analysis Report of Urban Rail Transit in China. 2020. Available online: https://www.camet.org.cn/tjxx/7647 (accessed on 12 July 2022).
- Salma, I.; Weidinger, T.; Maenhaut, W. Time-resolved mass concentration, composition and sources of aerosol particles in a metropolitan underground railway station. Atmos. Environ. 2007, 41, 8391–8405. [Google Scholar] [CrossRef]
- Cheriyan, D.; Khamraev, K.; Choi, J.-H. Varying health risks of respirable and fine particles from construction works. Sustain. Cities Soc. 2021, 72, 103016. [Google Scholar] [CrossRef]
- Sinharay, R.; Gong, J.; Barratt, B.; Ohman-Strickland, P.; Ernst, S.; Kelly, F.J.; Zhang, J.; Collins, P.; Cullinan, P.; Chung, K.F. Respiratory and cardiovascular responses to walking down a traffic-polluted road compared with walking in a traffic-free area in participants aged 60 years and older with chronic lung or heart disease and age-matched healthy controls: A randomised, crossover study. Lancet 2018, 391, 339–349. [Google Scholar]
- Kim, K.H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef]
- Wu, Z.H.; Liu, F.W.; Fan, W.H. Characteristics of PM10 and PM2.5 at Mount Wutai Buddhism Scenic Spot, Shanxi, China. Atmosphere 2015, 6, 1195–1210. [Google Scholar] [CrossRef]
- Maciejczyk, P.; Chen, L.C.; Thurston, G. The Role of Fossil Fuel Combustion Metals in PM2.5 Air Pollution Health Associations. Atmosphere 2021, 12, 1086. [Google Scholar] [CrossRef]
- Bolourchi, A.; Atabi, F.; Moattar, F.; Ehyaei, M.A. Experimental and numerical analyses of particulate matter concentrations in underground subway station. Int. J. Environ. Sci. Technol. 2018, 15, 2569–2580. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Lu, C.Y.; Chen, P.C.; Mao, I.F.; Chen, M.L. Analysis of Aerosol Composition and Assessment of Tunnel Washing Performance within a Mass Rapid Transit System in Taiwan. Aerosol Air Qual. Res. 2017, 17, 1527–1537. [Google Scholar] [CrossRef]
- van Drooge, B.L.; Prats, R.M.; Reche, C.; Minguillon, M.; Querol, X.; Grimalt, J.O.; Moreno, T. Origin of polycyclic aromatic hydrocarbons and other organic pollutants in the air particles of subway stations in Barcelona. Sci. Total Environ. 2018, 642, 148–154. [Google Scholar] [CrossRef]
- Querol, X.; Moreno, T.; Karanasiou, A.; Reche, C.; Alastuey, A.; Viana, M.; Font, O.; Gil, J.; de Miguel, E.; Capdevila, M. Variability of levels and composition of PM10 and PM2.5 in the Barcelona metro system. Atmos. Chem. Phys. 2012, 12, 5055–5076. [Google Scholar] [CrossRef] [Green Version]
- Carteni, A.; Cascetta, F.; Campana, S. Underground and ground-level particulate matter concentrations in an Italian metro system. Atmos. Environ. 2015, 101, 328–337. [Google Scholar] [CrossRef]
- Son, Y.-S.; Jeon, J.-S.; Lee, H.J.; Ryu, I.-C.; Kim, J.-C. Installation of platform screen doors and their impact on indoor air quality: Seoul subway trains. J. Air Waste Manag. Assoc. 2014, 64, 1054–1061. [Google Scholar] [CrossRef]
- Gao, Y.X.; Chen, F.; Wang, Z.J. The distribution and influential factors of PM2.5 and CO2 in urban rail carriages. Indoor Built Environ. 2019, 28, 1383–1395. [Google Scholar] [CrossRef] [Green Version]
- Kam, W.; Cheung, K.; Daher, N.; Sioutas, C. Particulate matter (PM) concentrations in underground and ground-level rail systems of the Los Angeles Metro. Atmos. Environ. 2011, 45, 1506–1516. [Google Scholar] [CrossRef]
- Kam, W.; Ning, Z.; Shafer, M.M.; Schauer, J.J.; Sioutas, C. Chemical Characterization and Redox Potential of Coarse and Fine Particulate Matter (PM) in Underground and Ground-Level Rail Systems of the Los Angeles Metro. Environ. Sci. Technol. 2011, 45, 6769–6776. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.Y.; Kim, Y.S.; Roh, Y.M.; Lee, C.M.; Kim, C.N. Spatial distribution of particulate matter (PM10 and PM2.5) in Seoul Metropolitan Subway stations. J. Hazard. Mater. 2008, 154, 440–443. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.B.; Kim, S.; Lee, G.J.; Bae, G.N.; Cho, Y.; Park, D.; Lee, D.H.; Kwon, S.B. Status of PM in Seoul metropolitan subway cabins and effectiveness of subway cabin air purifier (SCAP). Clean Technol. Environ. Policy 2014, 16, 1193–1200. [Google Scholar] [CrossRef]
- Martins, V.; Moreno, T.; Minguillon, M.C.; Amato, F.; de Miguel, E.; Capdevila, M.; Querol, X. Exposure to airborne particulate matter in the subway system. Sci. Total Environ. 2015, 511, 711–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Onat, B.; Stakeeva, B. Assessment of fine particulate matters in the subway system of Istanbul. Indoor Built Environ. 2014, 23, 574–583. [Google Scholar] [CrossRef]
- Perrino, C.; Marcovecchio, F.; Tofful, L.; Canepari, S. Particulate matter concentration and chemical composition in the metro system of Rome, Italy. Environ. Sci. Pollut. Res. 2015, 22, 9204–9214. [Google Scholar] [CrossRef]
- Wang, B.Q.; Liu, J.F.; Ren, Z.H.; Chen, R.H. Concentrations, properties, and health risk of PM2.5 in the Tianjin City subway system. Environ. Sci. Pollut. Res. 2016, 23, 22647–22657. [Google Scholar] [CrossRef]
- Zheng, H.L.; Deng, W.J.; Cheng, Y.; Guo, W. Characteristics of PM2.5, CO2 and particle-number concentration in mass transit railway carriages in Hong Kong. Environ. Geochem. Health 2017, 39, 739–750. [Google Scholar] [CrossRef]
- Wang, C.-Y.; Lim, B.-S.; Wang, Y.-H.; Huang, Y.-C.T. Identification of High Personal PM2.5 Exposure during Real Time Commuting in the Taipei Metropolitan Area. Atmosphere 2021, 12, 396. [Google Scholar] [CrossRef]
- Xu, B.; Yu, X.; Gu, H.; Miao, B.; Wang, M.D.; Huang, H.Q. Commuters’ exposure to PM2.5 and CO2 in metro carriages of Shanghai metro system. Transp. Res. Part D-Transp. Environ. 2016, 47, 162–170. [Google Scholar] [CrossRef]
- de Hartog, J.J.; Boogaard, H.; Nijland, H.; Hoek, G. Do the Health Benefits of Cycling Outweigh the Risks? Epidemiology 2011, 22, S76–S77. [Google Scholar] [CrossRef]
- Schepers, P.; Fishman, E.; Beelen, R.; Heinen, E.; Wijnen, W.; Parkin, J. The mortality impact of bicycle paths and lanes related to physical activity, air pollution exposure and road safety. J. Transp. Health 2015, 2, 460–473. [Google Scholar] [CrossRef] [Green Version]
- Moreno, T.; Kelly, F.J.; Dunster, C.; Oliete, A.; Martins, V.; Reche, C.; Minguillon, M.C.; Amato, F.; Capdevila, M.; de Miguel, E.; et al. Oxidative potential of subway PM2.5. Atmos. Environ. 2017, 148, 230–238. [Google Scholar] [CrossRef] [Green Version]
- Fondelli, M.C.; Chellini, E.; Yli-Tuomi, T.; Cenni, I.; Gasparrini, A.; Nava, S.; Garcia-Orellana, I.; Lupi, A.; Grechi, D.; Mallone, S.; et al. Fine particle concentrations in buses and taxis in Florence, Italy. Atmos. Environ. 2008, 42, 8185–8193. [Google Scholar] [CrossRef]
- Li, B.; Lei, X.-N.; Xiu, G.-L.; Gao, C.-Y.; Gao, S.; Qian, N.-S. Personal exposure to black carbon during commuting in peak and off-peak hours in Shanghai. Sci. Total Environ. 2015, 524, 237–245. [Google Scholar] [CrossRef]
- Panis, L.I.; de Geus, B.; Vandenbulcke, G.; Willems, H.; Degraeuwe, B.; Bleux, N.; Mishra, V.; Thomas, I.; Meeusen, R. Exposure to particulate matter in traffic: A comparison of cyclists and car passengers. Atmos. Environ. 2010, 44, 2263–2270. [Google Scholar] [CrossRef]
- Ramos, C.A.; Wolterbeek, H.T.; Almeida, S.M. Air pollutant exposure and inhaled dose during urban commuting: A comparison between cycling and motorized modes. Air Qual. Atmos. Health 2016, 9, 867–879. [Google Scholar] [CrossRef]
- Yu, Q.; Lu, Y.; Xiao, S.; Shen, J.; Li, X.; Ma, W.; Chen, L. Commuters’ exposure to PM1 by common travel modes in Shanghai. Atmos. Environ. 2012, 59, 39–46. [Google Scholar] [CrossRef]
- Shen, J.L.; Gao, Z. Commuter exposure to particulate matters in four common transportation modes in Nanjing. Build. Environ. 2019, 156, 156–170. [Google Scholar] [CrossRef]
- Ji, W.; Liu, C.; Liu, Z.; Wang, C.; Li, X. Concentration, composition, and exposure contributions of fine particulate matter on subway concourses in China. Environ. Pollut. 2021, 275, 116627. [Google Scholar] [CrossRef]
- PGCM (The People’s Government of Chengdu Municipality). Available online: www.chengdu.gov.cn (accessed on 12 July 2022).
- The Real-Time Air Quality Reports. Available online: https://www.tianqi.com/ (accessed on 12 July 2022).
- CMA (China Meterological Administration). Available online: https://weather.cma.cn/ (accessed on 12 July 2022).
- Liu, Q.J.; Cheng, H.X.; Ma, L.; Zhao, H.Q.; Zhang, D.X. Characteristics of Wind Speed on the Southern Slope of Taihang Mountains and Its Influence on Atmospheric Particulate Matter Concentration. Desert Oasis Meteorol. 2022, 16, 96–103. [Google Scholar]
- EPA (Environmental Protection Agency). Exposure Factors Handbook. Available online: https://www.epa.gov/expobox/exposure-factors-handbook-chapter-6 (accessed on 12 July 2022).
- Brochu, P.; Brodeur, J.; Krishnan, K. Derivation of physiological inhalation rates in children, adults, and elderly based on nighttime and daytime respiratory parameters. Inhal. Toxicol. 2011, 23, 74–94. [Google Scholar] [CrossRef]
- GB 3095-2012; Ambient Air Quality Standards. Stand-Ardization Administration of China; Ministry of Environmental Protection of PRC: Beijing, China, 2012.
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. World Health Organization. 2021. Available online: https://www.who.int/publications/i/item/9789240034228 (accessed on 12 July 2022).
- Huang, S.; Chen, P.X.; Hu, K.Y.; Qiu, Y.C.; Feng, W.W.; Ren, Z.P.; Wang, X.L.; Huang, T.; Wu, D.S. Characteristics and source identification of fine particles in the Nanchang subway, China. Build. Environ. 2021, 199, 107925. [Google Scholar] [CrossRef]
- Cheng, Y.H.; Ninh, X.H.; Yeh, S.L. Dominant Factors Influencing the Concentrations of Particulate Matters inside Train Carriages Traveling in Different Environments in the Taipei Mass Rapid Transit System. Aerosol Air Qual. Res. 2019, 19, 1579–1592. [Google Scholar] [CrossRef]
- Martins, V.; Moreno, T.; Mendes, L.; Eleftheriadis, K.; Diapouli, E.; Alves, C.A.; Duarte, M.; de Miguel, E.; Capdevila, M.; Querol, X.; et al. Factors controlling air quality in different European subway systems. Environ. Res. 2016, 146, 35–46. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Perales, J.E.; Colvile, R.N.; Nieuwenhuijsen, M.J.; Fernandez-Bremauntz, A.; Gutierrez-Avedoy, V.J.; Paramo-Figueroa, V.H.; Blanco-Jimenez, S.; Bueno-Lopez, E.; Mandujano, F.; Bernabe-Cabanillas, R.; et al. Commuters’ exposure to PM2.5, CO, and benzene in public transport in the metropolitan area of Mexico City. Atmos. Environ. 2004, 38, 1219–1229. [Google Scholar] [CrossRef]
- Ren, J.L.; He, J.J.; Kong, X.F.; Xu, W.; Kang, Y.T.; Yu, Z.; Li, H.W. A field study of CO2 and particulate matter characteristics during the transition season in the subway system in Tianjin, China. Energy Build. 2022, 254, 111620. [Google Scholar] [CrossRef]
- Wang, X.; Gao, H.O. Exposure to fine particle mass and number concentrations in urban transportation environments of New York City. Transp. Res. Part D-Transp. Environ. 2011, 16, 384–391. [Google Scholar] [CrossRef]
- Aarnio, P.; Yli-Tuomi, T.; Kousa, A.; Makela, T.; Hirsikko, A.; Hameri, K.; Raisanen, M.; Hillamo, R.; Koskentalo, T.; Jantunen, M. The concentrations and composition of and exposure to fine particles (PM2.5) in the Helsinki subway system. Atmos. Environ. 2005, 39, 5059–5066. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, M.J.; Gomez-Perales, J.E.; Colvile, R.N. Levels of particulate air pollution, its elemental composition, determinants and health effects in metro systems. Atmos. Environ. 2007, 41, 7995–8006. [Google Scholar] [CrossRef]
- Cha, Y.; Tu, M.; Elmgren, M.; Silvergren, S.; Olofsson, U. Factors affecting the exposure of passengers, service staff and train drivers inside trains to airborne particles. Environ. Res. 2018, 166, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Zhou, T.; Zhao, Y.C.; Xu, B. Characterization and Risk Assessment of Particulate Matter and Volatile Organic Compounds in Metro Carriage in Shanghai, China. Atmosphere 2019, 10, 302. [Google Scholar] [CrossRef]
- Bandiera, L.; Pavar, G.; Pisetta, G.; Otomo, S.; Mangano, E.; Seckl, J.R.; Digard, P.; Molinari, E.; Menolascina, F.; Viola, I.M. Face coverings and respiratory tract droplet dispersion. R. Soc. Open Sci. 2020, 7, 201663. [Google Scholar] [CrossRef] [PubMed]
- Kohanski, M.A.; Lo, L.J.; Waring, M.S. Review of indoor aerosol generation, transport, and control in the context of COVID-19. Int. Forum Allergy Rhinol. 2020, 10, 1173–1179. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.H.; Zhang, W.S.; Zhai, Y.X.; Zhang, H. Parametric Analysis of Particle Penetration under Different Pressure Differences. Build. Sci. 2022, 38, 111–118+260. [Google Scholar]
- Zhang, Z.X.; Li, J.Y.; Qi, J.C.; Zhang, J.M.; Zhao, X.Z.; Liu, J.J. Negative Pressure Difference Control in Airtight High-level Bio-safety Laboratory. China Saf. Sci. J. 2010, 20, 116–124. [Google Scholar]
- Ji, W.J.; Liu, Z.Z.; Liu, C.H.; Wang, C.W.; Li, X.F. Characteristics of fine particulate matter and volatile organic compounds in subway station offices in China. Build. Environ. 2021, 188, 107502. [Google Scholar] [CrossRef]
- Ji, W.J.; Li, X.F.; Wang, C.W. Composition and exposure characteristics of PM(2.5) on subway platforms and estimates of exposure reduction by protective masks. Environ. Res. 2021, 197, 111042. [Google Scholar] [CrossRef]
Routes | R1 | R2 | R3 | R4 | R6 | R7 | R8 | R9 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Factors | R | Sig. | R | Sig. | R | Sig. | R | Sig. | R | Sig. | R | Sig. | R | Sig. | R | Sig. |
PM2.5 | −0.243 | 0.446 | −0.174 | 0.59 | 0.067 | 0.837 | −0.049 | 0.879 | −0.136 | 0.673 | −0.216 | 0.501 | −0.343 | 0.275 | 0.015 | 0.963 |
PM10 | −0.419 | 0.176 | −0.344 | 0.274 | −0.143 | 0.657 | −0.217 | 0.498 | −0.263 | 0.408 | −0.411 | 0.184 | −0.548 | 0.065 | −0.145 | 0.654 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.; Wang, H.; Wu, D.; Ma, R.; Sun, L.; Deng, M. Influencing Factors of Particulate Matter Concentration in the Metro Carriage and the Corresponding Inhalation Intake Estimation: A Field Measurement in Chengdu. Atmosphere 2022, 13, 1821. https://doi.org/10.3390/atmos13111821
Huang S, Wang H, Wu D, Ma R, Sun L, Deng M. Influencing Factors of Particulate Matter Concentration in the Metro Carriage and the Corresponding Inhalation Intake Estimation: A Field Measurement in Chengdu. Atmosphere. 2022; 13(11):1821. https://doi.org/10.3390/atmos13111821
Chicago/Turabian StyleHuang, Shenghao, Han Wang, Dan Wu, Rongjiang Ma, Liangliang Sun, and Mengsi Deng. 2022. "Influencing Factors of Particulate Matter Concentration in the Metro Carriage and the Corresponding Inhalation Intake Estimation: A Field Measurement in Chengdu" Atmosphere 13, no. 11: 1821. https://doi.org/10.3390/atmos13111821
APA StyleHuang, S., Wang, H., Wu, D., Ma, R., Sun, L., & Deng, M. (2022). Influencing Factors of Particulate Matter Concentration in the Metro Carriage and the Corresponding Inhalation Intake Estimation: A Field Measurement in Chengdu. Atmosphere, 13(11), 1821. https://doi.org/10.3390/atmos13111821