An Integrated Air Quality Improvement Path of Energy-Environment Policies in the Guangdong-Hong Kong-Macao Greater Bay Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. An Overview of the GBA
2.2. Emissions and Emission Reduction Effects Estimation
2.3. Scenario Analysis
2.3.1. Overview of Scenarios
2.3.2. Forecasting Future Energy Development in the GBA
2.4. Air Quality Simulations
3. Results
3.1. Emission Reduction Effect of Energy-Environment Policy Implemented in the GBA
3.2. Scenario Analysis of Energy Consumption Development in the GBA
3.3. Scenario Analysis of Air Pollutant Emissions in the GBA
3.4. Simulation Results of Air Quality under Different Policy Scenarios
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lin, C.Q.; Liu, G.; Lau, A.K.H.; Li, Y.; Li, C.C.; Fung, J.C.H.; Lao, X.Q. High-resolution satellite remote sensing of provincial PM2.5 trends in China from 2001 to 2015. Atmos. Environ. 2018, 180, 110–116. [Google Scholar] [CrossRef]
- Zhang, X.; Fung, J.; Zhang, Y.; Lau, A.; Huang, W. Assessing PM2.5 emissions in 2020: The impacts of integrated emission control policies in China. Environ. Pollut. 2020, 263, 114575. [Google Scholar] [CrossRef] [PubMed]
- IEA. Energy and Air Pollution; IEA: Paris, France, 2016; Available online: https://www.iea.org/reports/energy-and-air-pollution (accessed on 24 September 2022).
- Guangdong Provincial Bureau of Statistics. Guangdong Statistical Yearbook 2021; China Statistics Press: Beijing, China, 2021. (In Chinese) [Google Scholar]
- Zhang, Z.; Tao, J.; Lu, J.Q.; Wu, G.Z. Challenges facing air quality improvement in the Guangdong-Hong Kong-Macao Greater Bay Area and implications of foreign bay area experiences. Environ. Prot. 2019, 47, 61–63. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, S.; Sun, H. Energy development status and transformation trend in Guangdong-Hong Kong-Macao Greater Bay Area. Int. Pet. Econ. 2021, 12, 33. [Google Scholar]
- Vasilakos, P.N.; Shen, H.; Mehdi, Q.; Wilcoxen, P.; Driscoll, C.; Fallon, K.; Burtraw, D.; Domeshek, M.; Russell, A.G. US Clean Energy Futures—Air Quality Benefits of Zero Carbon Energy Policies. Atmosphere 2022, 13, 1401. [Google Scholar] [CrossRef]
- Tudor, C.; Sova, R. EU Net-Zero Policy Achievement Assessment in Selected Members through Automated Forecasting Algorithms. ISPRS Int. J. Geo-Inf. 2022, 11, 232. [Google Scholar] [CrossRef]
- Danek, T.; Zareba, M. The Use of Public Data from Low-Cost Sensors for the Geospatial Analysis of Air Pollution from Solid Fuel Heating during the COVID-19 Pandemic Spring Period in Krakow, Poland. Sensors 2021, 21, 5208. [Google Scholar] [CrossRef]
- Zhang, Q.; Zheng, Y.; Tong, D.; Shao, M.; Hao, J. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl. Acad. Sci. USA 2019, 116, 24463–24469. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Ning, M.; Lei, Y.; Sun, Y.; Liu, W.; Wang, J. Defending blue sky in China: Effectiveness of the “Air Pollution Prevention and Control Action Plan” on air quality improvements from 2013 to 2017. J. Environ. Manag. 2019, 252, 109603. [Google Scholar] [CrossRef]
- Hu, J.; Huang, L.; Chen, M.; He, G.; Zhang, H. Impacts of power generation on air quality in China—Part II: Future scenarios. Resour. Conserv. Recycl. 2016, 121, 115–127. [Google Scholar] [CrossRef]
- Lei, Y.; Yan, G. Thoughts on the Key Issues Regarding Atmospheric Environment Management in the 14th Five-Year Plan. Chin. J. Environ. Manag. 2020, 4, 35–39. [Google Scholar] [CrossRef]
- Tong, D.; Geng, G.; Jiang, K.; Cheng, J.; Zheng, Y.; Hong, C.; Yan, L.; Zhang, Y.; Chen, X.; Bo, Y.; et al. Energy and emission pathways towards PM2.5 air quality attainment in the Beijing-Tianjin-Hebei region by 2030. Sci. Total Environ. 2019, 692, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Zheng, B.; Zheng, Y.; Tong, D.; Liu, Y.; Ma, H.; Hong, C.; Geng, G.; Guan, D.; He, K.; et al. Co-benefits of CO2 emission reduction from China’s clean air actions between 2013–2020. Nat. Commun. 2022, 13, 5061. [Google Scholar] [CrossRef]
- Zheng, B.; Tong, D.; Li, M.; Liu, F.; Hong, C.; Geng, G.; Li, H.; Li, X.; Peng, L.; Qi, J.; et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 2018, 18, 14095–14111. [Google Scholar] [CrossRef] [Green Version]
- Liao, C.; Zhang, H.; Li, N. Strategic studies on the adjustment of industrial structure in Guangdong province to achieve PM2.5 air quality targets. Environ. Pollut. Control 2020, 42, 134–139. [Google Scholar] [CrossRef]
- Wang, N.; Lyu, X.P.; Deng, X.J.; Guo, H.; Deng, T.; Li, Y.; Yin, C.Q.; Li, F.; Wang, S.Q. Assessment of regional air quality resulting from emission control in the Pearl River Delta region, southern China. Sci. Total Environ. 2016, 573, 1554–1565. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, Y.; Lang, J.; Zhou, Y.; Li, Y.; Guo, X.; Wang, W.; Liu, B. Evaluation of different control measures in 2014 to mitigate the impact of ship emissions on air quality in the Pearl River Delta, China. Atmos. Environ. 2019, 216, 116911. [Google Scholar] [CrossRef]
- Liu, Y.-H.; Liao, W.-Y.; Lin, X.-F.; Li, L.; Zeng, X.-L. Assessment of co-benefits of vehicle emission reduction measures for 2015–2020 in the Pearl River Delta region, China. Environ. Pollut. 2017, 223, 62–72. [Google Scholar] [CrossRef]
- The State Council of the People’s Republic of China. Outline Development Plan for the Guangdong-Hong Kong-Macao Greater Bay Area; The State Council of the People’s Republic of China: Beijing, China, 2019. (In Chinese) [Google Scholar]
- Guangdong-Hong Kong-Macao Pearl River Delta Regional Air Quality Monitoring Network. A Report of Monitoring Results in 2021; Quality Management Committee of Guangdong-Hong Kong-Macao Pearl River Delta Regional Air Quality Monitoring Network: Guangzhou, China. Available online: http://gdee.gd.gov.cn/attachment/0/493/493223/3965254.pdf (accessed on 24 September 2022).
- Gao, Y.; Zhang, L.; Huang, A.; Kou, W.; Bo, X.; Cai, B.; Qu, J. Unveiling the spatial and sectoral characteristics of a high-resolution emission inventory of CO2 and air pollutants in China. Sci. Total Environ. 2022, 847, 157623. [Google Scholar] [CrossRef]
- Pan, Y.; Li, N.; Zheng, J.; Yin, S.; Li, C.; Yang, J.; Zhong, L.; Chen, D.; Deng, S.; Wang, S.S. Emission inventory and characteristics of anthropogenic air pollutant sources in Guangdong Province. Acta Sci. Circumstantiae 2015, 35, 2655–2669. [Google Scholar] [CrossRef]
- Gao, Q.; Gao, W.; Ma, Z.; Tang, J.; Fu, J.; Li, Y.; Ren, J. The synergy effect assessment method and its application for air pollutants and greenhouse gases reduction. Clim. Change Res. 2021, 3, 268–278. [Google Scholar] [CrossRef]
- Chang, S.; Zheng, Y.; Zeng, W.; Liao, C.; Luo, Y.; Wang, L.; Zhang, Y. Strategies for PM2.5 in Guangdong province to achieve the WHO-Ⅱ air quality target from the perspective of synergistic control with CO2. Res. Environ. Sci. 2021, 34, 2105–2112. [Google Scholar] [CrossRef]
- Song, S.; Li, T.; Liu, P.; Li, Z. The transition pathway of energy supply systems towards carbon neutrality based on a multi-regional energy infrastructure planning approach: A case study of China. Energy 2022, 238, 122037. [Google Scholar] [CrossRef]
- Zhang, P.; Xu, J.; Guo, W.; Wu, W.; Zhong, C.; Wei, W. Low-Carbon Transformation of the Power System in the Guangdong-Hong Kong-Macao Greater Bay Area. J. Shanghai Jiaotong Univ. 2022, 56, 293. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, J.; Wang, X.; Chen, X.; Song, X.; Zhou, L.; Yan, G. Pathway of Carbon Emission Peak in China′s Electric Power Industry. Res. Environ. Sci. 2022, 35, 329–338. [Google Scholar] [CrossRef]
- Sun, X. Interpretation of China’s Electricity Elasticity Coefficient Since 2014. China Energy News, 4 May 2015. [Google Scholar]
- Harel, P.; Baguant, J. A growth prediction for electrical energy consumption in Mauritius. Energy 1991, 16, 707–711. [Google Scholar] [CrossRef]
- Byun, D.; Schere, K.L. Review of the Governing Equations, Computational Algorithms, and Other Components of the Models-3 Community Multiscale Air Quality (CMAQ) Modeling System. Appl. Mech. Rev. 2006, 59, 51. [Google Scholar] [CrossRef]
- Yarwood, G.; Rao, S.; Yocke, M.; Whitten, G.Z. Updates to the Carbon Bond Chemical Mechanism: CB05. Final Report Prepared for the United States Environmental Protection Agency. Available online: http://www.camx.com/publ/pdfs/CB05_Final_Report_120805.pdf (accessed on 8 October 2022).
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Barker, D.M.; Wang, W.; Powers, J.G. A Description of the Advanced Research WRF Version 3 (No. NCAR/TN-475+STR); University Corporation for Atmospheric Research: Boulder, CO, USA, 2008. [Google Scholar] [CrossRef]
- Morrison, H.; Gettelman, A. A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model, version 3 (CAM3). Part I: Description and numerical test. J. Clim. 2008, 21, 3642–3659. [Google Scholar] [CrossRef]
- Pleim, J.E. A combined local and nonlocal closure model for the atmospheric boundary layer.Part I: Model description and testing. J. Appl. Meteorol. Climatol. 2007, 46, 1383–1395. [Google Scholar] [CrossRef]
- Xiu, A.; Pleim, J.E. Development of a land surface model. Part I: Application in a mesoscale meteorological model. J. Appl. Meteorol. 2001, 40, 192–209. [Google Scholar] [CrossRef]
- Sala, S.; Benini, L.; Mancini, L.; Pant, R. Integrated assessment of environmental impact of Europe in 2010: Data sources and extrapolation strategies for calculating normalisation factors. Int. J. Life Cycle Assess. 2015, 20, 1568–1585. [Google Scholar] [CrossRef] [Green Version]
- Zheng, B.; Zhang, Q.; Zhang, Y.; He, K.B.; Wang, K.; Zheng, G.J.; Duan, F.K.; Ma, Y.L.; Kimoto, T. Heterogeneous chemistry: A mechanism missing in current models to explain secondary inorganic aerosol formation during the January 2013 haze episode in North China. Atmos. Chem. Phys. 2015, 14, 2031–2049. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Z.; Zheng, J.; Zhu, M.; Huang, Z.; Zhang, Z. Recent developments of anthropogenic air pollutant emission inventories in Guangdong province, China. Sci. Total Environ. 2018, 627, 1080–1092. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.Z.; Sha, Q.E.; Li, C.; Wang, S.Z.; Wu, L.L.; Zhang, X.C.; Zhang, J.Y.; Yan, M. Assessment of emission reduction effect of major air pollution control measures in the Pearl River Delta from 2013 to 2017. Acta Sci. Circumstantiae 2021, 41, 1800–1808. [Google Scholar] [CrossRef]
- National Bulletin of Atmospheric Environment Meteorology from 2017–2020. Available online: http://www.cma.gov.cn/ (accessed on 8 September 2022).
- Guenther, A.; Jiang, X.; Heald, C.; Sakulyanontvittaya, T.; Duhl, T.; Emmons, L.; Wang, X. The model of emissions of gases and aerosols from nature version 2.1 (megan2.1): An extended and updated framework for modeling biogenic emissions. Geosci. Model Dev. 2012, 5, 1471–1492. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Zeng, W.; Zhang, Y.; Liu, Y.; Liao, C.; Gan, Y.; Deng, X. Establishment of emission inventory and spatial-temporal allocation model for air pollutant sources in the Pearl River Delta region. China Environ. Sci. 2015, 35, 3521–3534. [Google Scholar]
- Environmental Protection Department. Hong Kong Air Pollutant Emission Inventory for 2015. Available online: www.epd.gov.hk/epd/english/environmentinhk/air/data/emission_inve.html (accessed on 8 August 2022).
- Environmental Protection Bureau (DSPA). Report on the State of the Environment of Macao 2015. Available online: https://www.dspa.gov.mo/StateReportHTML/2015/index_en.htm (accessed on 8 August 2022).
- Bian, Y. Emission Evolutions Characteristics of Air Pollutants in Guangdong Province and Their Impacts on Air Quality. Master’s Thesis, South China University of Technology, Guangzhou, China, 2018. [Google Scholar]
- Lin, Z.W.; Wang, P.; Ren, S.-Y.; Xu, H.-W.; Zhang, C.; Zhao, D.-Q. Economic development, energy demand, and carbon emission prospects of China’s provinces during the 14th Five-Year Plan period: Application of CMRCGE model. Adv. Clim. Change Res. 2019, 10, 165–173. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, P.; Ren, S.; Xu, H.; Zhang, C.; Zhao, D. Assessment of economic, environmental and health benefits of the energy transition path—Take the GBA as an example. Clim. Change Res. 2021, 257, 1673–1719. [Google Scholar]
- Wang, S.; Zhang, Y.; Ma, J.; Zhu, S.; Shen, J.; Wang, P.; Zhang, H. Responses of decline in air pollution and recovery associated with COVID-19 lockdown in the Pearl River Delta. Sci. Total Environ. 2021, 756, 143868. [Google Scholar] [CrossRef]
- National Bulletin of Atmospheric Environment Meteorology in 2020. P24-38. Available online: http://www.cma.gov.cn/zfxxgk/gknr/qxbg/202104/t20210406_3052405.html (accessed on 8 August 2022).
Energy-Related Clean Air Measures | SBAU | SA | SO |
---|---|---|---|
Energy supply structure | The power generation scale of thermal power and new energy will be adjusted based on the existing regional development plan | Increase the capacity of gas power and new energy generation. Phase out old coal-fired power plants on schedule. | Further increase the capacity of new energy power generation in the GBA. Accelerate phasing out old coal-fired power plants. |
Industrial structure adjustment | Conduct the industrial development plans of eleven cities in the GBA. | Accelerate the development of emerging industries and accelerate phasing out outdated capacities of traditional industries. | Further accelerate the development of advanced manufacturing and emerging industries and accelerate phasing out outdated traditional industries. |
Energy efficiency improvements in the industries | Remain consistent with current policies. | The unit energy consumption of energy-intensive industries such as cement, steel, and petrochemicals will reach the advanced level. | The unit energy consumption of major industries will reach the advanced level. |
Energy use caps in the industries | Slow down the growth of coal consumption, and moderately promote the de-coalization of industrial end-use energy. | Promote “coal-to-gas” work in high energy-consuming industries. | Accelerate the transformation of “coal-to-gas”, “coal-to-electricity” in key industries, strengthen the promotion of central heating in industrial parks, and accelerate clean energy transformation. |
End-of-pipe clean air measures | Remain consistent with the period of 2015 to 2020. | Adopt enhanced clean air measures and require over 70% completion rate of each task. | Adopt more stringent clean air measures and require 100% completion rate of each task. |
Transportation | Remain consistent with current policies. | The proportion of energy-saving and low-emission transportation modes should be appropriately increased. | The development rate of energy-saving and low-emission transportation modes will be significantly increased. |
Scenario | Sector | Energy Consumption (in Mtce.) | Energy Structure (%) | |||
---|---|---|---|---|---|---|
Coal | Fuel | Natural Gas | Electricity | |||
SBAU | Primary industry | 2.3 | 4.4% | 23.5% | 0 | 72.1% |
Secondary industry | 177.1 | 12.5% | 8.7% | 10.1% | 68.7% | |
Transportation | 61.9 | 0 | 96.2% | 0 | 3.8% | |
Residential livings | 47.9 | 1.2% | 16.6% | 5.2% | 77.1% | |
Tertiary industry | 29.7 | 1.1% | 4.2% | 8.1% | 86.5% | |
Total | 318.9 | 7.3% | 26.6% | 7.2% | 59.0% | |
SA | Primary industry | 2.3 | 4.4% | 23.5% | 0 | 72.1% |
Secondary industry | 166.8 | 10.2% | 8.6% | 10.9% | 70.3% | |
Transportation | 59.4 | 0 | 95.8% | 0 | 4.1% | |
Residential livings | 44.3 | 1.1% | 10.5% | 4.8% | 83.7% | |
Tertiary industry | 27.8 | 0.7% | 2.7% | 7.5% | 89.1% | |
Total | 300.6 | 5.9% | 25.7% | 7.5% | 60.9% | |
SO | Primary industry | 2.3 | 4.4% | 23.5% | 0 | 72.1% |
Secondary industry | 157.8 | 9.9% | 8.5% | 10.7% | 70.9% | |
Transportation | 57.1 | 0 | 95.3% | 0 | 4.7% | |
Residential livings | 39.3 | 0.7% | 8.4% | 5.3% | 85.6% | |
Tertiary industry | 25.8 | 0.3% | 2.1% | 8.0% | 89.6% | |
Total | 282.3 | 5.7% | 25.5% | 7.5% | 61.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Wang, L.; Chang, S.; Yang, Z.; Luo, Y.; Liao, C. An Integrated Air Quality Improvement Path of Energy-Environment Policies in the Guangdong-Hong Kong-Macao Greater Bay Area. Atmosphere 2022, 13, 1841. https://doi.org/10.3390/atmos13111841
Li Y, Wang L, Chang S, Yang Z, Luo Y, Liao C. An Integrated Air Quality Improvement Path of Energy-Environment Policies in the Guangdong-Hong Kong-Macao Greater Bay Area. Atmosphere. 2022; 13(11):1841. https://doi.org/10.3390/atmos13111841
Chicago/Turabian StyleLi, Yixi, Long Wang, Shucheng Chang, Zaidong Yang, Yinping Luo, and Chenghao Liao. 2022. "An Integrated Air Quality Improvement Path of Energy-Environment Policies in the Guangdong-Hong Kong-Macao Greater Bay Area" Atmosphere 13, no. 11: 1841. https://doi.org/10.3390/atmos13111841
APA StyleLi, Y., Wang, L., Chang, S., Yang, Z., Luo, Y., & Liao, C. (2022). An Integrated Air Quality Improvement Path of Energy-Environment Policies in the Guangdong-Hong Kong-Macao Greater Bay Area. Atmosphere, 13(11), 1841. https://doi.org/10.3390/atmos13111841