An Integrated Estimating Approach for Design Wind Speed under Extreme Wind Climate in the Yangtze River Inland Waterway
Abstract
:1. Introduction
2. Information and Methods
2.1. Data
2.2. Weibull–Tukey Sampling Method
2.3. Design Wind Speed Estimation
3. Results
3.1. Spatial Characterization of Maximum Wind Speeds
3.2. Extreme Wind Speed Variations Based on the Weibull Distribution
3.3. Design Wind Speed Analysis Based on GEV Distribution
- Annual scale engineering design wind speed
- 2.
- Seasonal-scale engineering design wind speed
3.4. Assessment of the Effect of Projection of Engineering Design Wind Speed
3.5. Trend Analysis of Extreme Wind Speed Evolution
3.6. Projected Future Changes in Engineering Design Wind Speed
4. Discussion
4.1. Main Findings
4.2. Limitations of Study Approach
5. Conclusions
- (1)
- The maximum wind speed in the YRIW shows a decline—recovery trend in the historical period, with Wuhan, Nanjing and Shanghai stations showing a slight increase except for the dry season.
- (2)
- The maximum wind speed in the study area does not follow the Weibull distribution, and the extracted extreme wind speeds have type I, II and III GEV distributions; the results compared with the Building Load Code show that the updated engineering design wind speeds better reflect the climatic and topographic conditions of the trunk port.
- (3)
- The accuracy of the extreme wind speed projection and the engineering design wind speed will be improved by high-resolution spatial and temporal data and encrypted long-time-series monitoring stations applicability. The wind speed evolution characteristics under different climate change scenarios in the future are predicted, and climate adaptation countermeasures were explored.
- (4)
- The design wind speed of the project was analysed by the high-precision climate model product (CNRM-CM6-1-HR) with an overall increasing trend, and only the design wind speed in the windy areas of Shanghai, Jiujiang and Yueyang showed a weak decrease.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mou, N.X.; Wang, C.Y.; Yang, T.F.; Zhang, L.X. Evaluation of development potential of ports in the Yangtze River delta using FAHP-entropy model. Sustainability 2020, 12, 493. [Google Scholar] [CrossRef] [Green Version]
- Lung, T.; Lavalle, C.; Hiederer, R.; Dosio, A.; Bouwer, L.M. A multi-hazard regional level impact assessment for Europe combining indicators of climatic and non-climatic change. Glob. Environ. Chang. 2013, 23, 522–536. [Google Scholar] [CrossRef]
- Sardain, A.; Sardain, E.; Leung, B. Global forecasts of shipping traffic and biological invasions to 2050. Nat. Sustain. 2019, 2, 274–282. [Google Scholar] [CrossRef]
- Baroud, H.; Barker, K.; Ramirez-Marquez, J.E. Importance measures for inland waterway network resilience. Transp. Res. Part E Logist. Transp. Rev. 2014, 62, 55–67. [Google Scholar] [CrossRef]
- Verschuur, J.; Koks, E.E.; Hall, J.W. Port disruptions due to natural disasters: Insights into port and logistics resilience. Transp. Res. Part D-Transp. Environ. 2020, 85, 102393. [Google Scholar] [CrossRef]
- Liu, L.J.; Wen, Y.Q.; Liang, Y.J.; Zhang, F.; Yang, T.T. Extreme weather impacts on inland waterways transport of Yangtze River. Atmosphere 2019, 10, 133. [Google Scholar] [CrossRef] [Green Version]
- Christodoulou, A.; Christidis, P.; Bisselink, B. Forecasting the impacts of climate change on inland waterways. Transp. Res. Part D-Transp. Environ. 2020, 82, 102159. [Google Scholar] [CrossRef]
- Gray, S.R.J.; Gagnon, A.S.; Gray, S.A.; O’Dwyer, B.; O’Mahony, C.; Muir, D.; Devoy, R.J.N.; Falaleeva, M.; Gault, J. Are coastal managers detecting the problem? Assessing stakeholder perception of climate vulnerability using Fuzzy Cognitive Mapping. Ocean Coast. Manag. 2014, 94, 74–89. [Google Scholar] [CrossRef]
- Natarajan, N.; Vasudevan, M.; Rehman, S. Evaluation of suitability of wind speed probability distribution models: A case study from Tamil Nadu, India. Environ. Sci. Pollut. Res. 2021, 14, 1–14. [Google Scholar] [CrossRef]
- Xiang, C.; Chen, A.R.; Li, Q.H.; Ma, R.J. Research on the probability model of basic wind speed estimation in China. Wind Struct. 2021, 32, 587–596. [Google Scholar] [CrossRef]
- Yahaya, A.S.; Nor, N.; Jali, N.R.M.; Ramli, N.; Ahmad, F.; Ul-Saufie, A.Z. Determination of the Probability Plotting Position for Type I Extreme Value Distribution. J. Appl. Sci. 2012, 12, 1501–1506. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, A.; Deep, S.; Datta, D.; Vijaywargiya, A.; Roy, R.; Phanikanth, V.S. Weibull and Generalized Extreme Value Distributions for Wind Speed Data Analysis of Some Locations in India. Ksce J. Civ. Eng. 2019, 23, 3476–3492. [Google Scholar] [CrossRef]
- Perrin, O.; Rootzén, H.; Taesler, R. A discussion of statistical methods used to estimate extreme wind speeds. Theor. Appl. Climatol. 2006, 85, 203–215. [Google Scholar] [CrossRef]
- Gumbel, E. Statistics of extremes. In Statistics of Extremes; Columbia University Press: New York, NY, USA, 1958. [Google Scholar]
- Simiu, E.; Yeo, D. Wind Effects on Structures: Modern Structural Design for Wind; John Wiley & Sons: New York, NY, USA, 2019. [Google Scholar]
- Roslan, R.; Chin, S.N.; Gabda, D. Parameter Estimations of the Generalized Extreme Value Distributions for Small Sample Size. Math. Stat. 2020, 8, 47–51. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Mishra, V.; Ganguly, A.R. Evaluating wind extremes in CMIP5 climate models. Clim. Dyn. 2015, 45, 441–453. [Google Scholar] [CrossRef]
- Van den Hurk, B.; Tank, A.K.; Lenderink, G.; Ulden, A.V.; Oldenborgh, G.J.V.; Katsman, C.; Brink, H.V.D.; Keller, F.; Bessembinder, J.; Burgers, G.; et al. New climate change scenarios for the Netherlands. Water Sci. Technol. 2007, 56, 27–33. [Google Scholar] [CrossRef]
- De Winter, R.C.; Sterl, A.; Ruessink, B.G. Wind extremes in the North Sea Basin under climate change: An ensemble study of 12 CMIP5 GCMs. J. Geophys. Res.-Atmos. 2013, 118, 1601–1612. [Google Scholar] [CrossRef] [Green Version]
- Roberts, M.J.; Camp, J.; Seddon, J.; Vidale, P.L.; Hodges, K.; Vanniere, B.; Mecking, J.; Haarsma, R.; Bellucci, A.; Scoccimarro, E.; et al. Impact of model resolution on tropical cyclone simulation using the HighResMIP-PRIMAVERA multimodel ensemble. J. Clim. 2020, 33, 2557–2583. [Google Scholar] [CrossRef] [Green Version]
- Liu, L.J.; Zhang, F. Spatiotemporal Dynamics of Maximum Wind Speed Using the Wind Multiplier Downscaling Method in the Yangtze River Inland Waterway from 1980 to 2017. Atmosphere 2021, 12, 1216. [Google Scholar] [CrossRef]
- Simmons, A.J.; Willett, K.M.; Jones, P.D.; Thorne, P.W.; Dee, D.P. Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets. J. Geophys. Res.-Atmos. 2010, 115, D1. [Google Scholar] [CrossRef]
- Liu, L.J.; Liang, Y.J. Wind power forecast optimization by integration of CFD and Kalman filtering. Energy Sources Part A-Recover. Util. Environ. Eff. 2021, 43, 1880–1896. [Google Scholar] [CrossRef]
- Fisher, R.A.; Tippett, L.H.C. Limiting forms of the frequency distribution of the largest or smallest member of a sample. In Mathematical Proceedings of the Cambridge Philosophical Society; Cambridge University Press: Cambridge, UK, 1928; pp. 180–190. [Google Scholar]
- Tukey, J.W. Exploratory Data Analysis; Addison-Wesley: Reading, MA, USA, 1977; Volume 2. [Google Scholar]
- Wilks, D.S. Statistical Methods in the Atmospheric Sciences; Academic Press: Cambridge, UK, 2011; Volume 100. [Google Scholar]
- Hosking, J.R.M.; Wallis, J.R.; Wood, E.F. Estimation of the generalized extreme-value distribution by the method of probability-weighted moments. Technometrics 1985, 27, 251–261. [Google Scholar] [CrossRef]
- Shi, H.Y.; Dong, Z.B.; Xiao, N.; Huang, Q.N. Wind Speed Distributions Used in Wind Energy Assessment: A review. Front. Energy Res. 2021, 9, 790. [Google Scholar] [CrossRef]
- Hu, C.L.; Zhang, Y.F.; Jiang, Z.X.; Wang, M.; Han, C. Development of large-scale sand bodies in a fault-bounded lake basin: Pleistocene-Holocene Poyang Lake, Southern China. J. Paleolimnol. 2021, 65, 407–428. [Google Scholar] [CrossRef]
- Kang, D.; Ko, K.; Huh, J. Determination of extreme wind values using the Gumbel distribution. Energy 2015, 86, 51–58. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Liu, L.; Liang, Y.; He, C.; Jin, J. An Integrated Estimating Approach for Design Wind Speed under Extreme Wind Climate in the Yangtze River Inland Waterway. Atmosphere 2022, 13, 1849. https://doi.org/10.3390/atmos13111849
Li J, Liu L, Liang Y, He C, Jin J. An Integrated Estimating Approach for Design Wind Speed under Extreme Wind Climate in the Yangtze River Inland Waterway. Atmosphere. 2022; 13(11):1849. https://doi.org/10.3390/atmos13111849
Chicago/Turabian StyleLi, Juanjuan, Lijun Liu, Youjia Liang, Chao He, and Jiming Jin. 2022. "An Integrated Estimating Approach for Design Wind Speed under Extreme Wind Climate in the Yangtze River Inland Waterway" Atmosphere 13, no. 11: 1849. https://doi.org/10.3390/atmos13111849
APA StyleLi, J., Liu, L., Liang, Y., He, C., & Jin, J. (2022). An Integrated Estimating Approach for Design Wind Speed under Extreme Wind Climate in the Yangtze River Inland Waterway. Atmosphere, 13(11), 1849. https://doi.org/10.3390/atmos13111849