One-Time Deep Application of Nitrogen Fertilizer: A Potential Measure of Ammonia Mitigation in Grainland
Abstract
:1. Introduction
2. Essential Aspects of One-Time Application
3. Advantages and Mitigation Capacity
4. Implementation Obstacles
5. Perspective
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- China National Statistics Bureau. China Statistical Yearbooks; China Statistics Press: Beijing, China, 2011–2016.
- Jiao, X.; Lyu, Y.; Wu, X.; Li, H.; Cheng, L.; Zhang, C.; Shen, J. Grain production versus resource and environmental costs: Towards increasing sustainability of nutrient use in China. J. Exp. Bot. 2016, 67, 4935–4949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Ouyang, X.; Gu, Y.; Cheng, K.; Smith, P.; Sun, J.; Pan, G. Climate change may interact with nitrogen fertilizer management leading to different ammonia loss in China’s croplands. Glob. Chang. Biol. 2021, 27, 6525–6535. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Qiu, B.; Zou, Q.; Qiu, T.; Li, R.; Truong, A.; Xu, D. Source specific PM2.5 associated with heart rate variability in the elderly with coronary heart disease: A community-based panel study. Chemosphere 2020, 260, 127399. [Google Scholar] [CrossRef] [PubMed]
- Horswill, P.; O’Sullivan, O.; Phoenix, G.K.; Lee, J.A.; Leake, J.R. Base cation depletion, eutrophication and acidification of species-rich grasslands in response to long-term simulated nitrogen deposition. Environ. Pollut. 2008, 155, 336–349. [Google Scholar] [CrossRef]
- Pan, B.; Lam, S.K.; Mosier, A.; Luo, Y.; Chen, D. Ammonia volatilization from synthetic fertilizers and its mitigation strategies: A global synthesis. Agric. Ecosyst. Environ. 2016, 232, 283–289. [Google Scholar] [CrossRef]
- Ti, C.; Xia, L.; Chang, S.X.; Yan, X. Potential for mitigating global agricultural ammonia emission: A meta-analysis. Environ. Pollut. 2019, 245, 141–148. [Google Scholar] [CrossRef]
- Li, T.; Wang, Z.; Wang, C.; Huang, J.; Feng, Y.; Shen, W.; Yang, L. Ammonia volatilization mitigation in crop farming: A review of fertilizer amendment technologies and mechanisms. Chemosphere 2022, 303, 134944. [Google Scholar] [CrossRef]
- Ali, S.; Danafar, F. Controlled-release fertilizers: Advances and challenges. Life Sci. J. 2015, 12, 33–45. [Google Scholar]
- Jia, K.; Shen, B.; Zhang, T.; Zhu, Y.; Qu, Y.; Wang, X. Analysis of Fertilization Compounding Rate and Compound Fertilizer Consumption Status and Change (Part II). Fertil. Health 2020, 47, 1–5. [Google Scholar]
- Liu, Z.; Wu, X.; Tan, D.; Li, Y.; Jiang, L. Application and environmental effects of one-off fertilization technique in major cereal crops in China. Sci. Agric. Sin. 2018, 51, 3827–3839. [Google Scholar]
- Mencaroni, M.; Dal Ferro, N.; Furlanetto, J.; Longo, M.; Lazzaro, B.; Sartori, L.; Morari, F. Identifying N fertilizer management strategies to reduce ammonia volatilization: Towards a site-specific approach. J. Environ. Manag. 2021, 277, 111445. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Sun, H.; Zhang, J.; Zhang, X.; Lu, L.; Shi, L.; Zhou, S. Effects of different fertilization methods on ammonia volatilization from rice paddies. J. Clean. Prod. 2021, 295, 126299. [Google Scholar] [CrossRef]
- Song, H.; Chen, X.; Cheng, L.; Lu, D.; Wang, H. Negligible ammonia volatilization loss with one-time root-zone targeted application of common nitrogen, phosphorus, and potassium fertilizers in transplanted rice cultivation. Agric. Ecosyst. Environ. 2022, 338, 108072. [Google Scholar] [CrossRef]
- Hodge, A. Roots: The Acquisition of Water and Nutrients from the Heterogeneous Soil Environment; Progress in botany 71; Springer: Berlin/Heidelberg, Germany, 2010; pp. 307–337. [Google Scholar]
- Szulc, P.; Wilczewska, W.; Ambroży-Deręgowska, K.; Mejza, I.; Szymanowska, D.; Kobus-Cisowska, J. Influence of the depth of nitrogen-phosphorus fertiliser placement in soil on maize yielding. Plant Soil Environ. 2020, 66, 14–21. [Google Scholar] [CrossRef] [Green Version]
- Nkebiwe, P.M.; Weinmann, M.; Bar-Tal, A.; Müller, T. Fertilizer placement to improve crop nutrient acquisition and yield: A review and meta-analysis. Field Crops Res. 2016, 196, 389–401. [Google Scholar] [CrossRef]
- Cui, P.; Chen, Z.; Ning, Q.; Wei, H.; Zhang, H.; Lu, H.; Zhang, H. One-Time Nitrogen Fertilizer Application Using Controlled-Release Urea Ensured the Yield, Nitrogen Use Efficiencies, and Profits of Winter Wheat. Agronomy 2022, 12, 1792. [Google Scholar] [CrossRef]
- Kichler, C.M.; Fulton, J.P.; Raper, R.L.; Zech, W.C.; McDonald, T.P.; Brodbeck, C.J. Spatially monitoring tractor performance to evaluate energy requirements of variable depth tillage and implement selection. In Proceedings of the 2007 ASAE Annual Meeting. American Society of Agricultural and Biological Engineers, Minneapolis, MN, USA, 17–20 June 2007. [Google Scholar]
- Wesolowska, M.; Rymarczyk, J.; Góra, R.; Baranowski, P.; Slawinski, C.; Klimczyk, M.; Schimmelpfennig, L. New slow-release fertilizers-economic, legal and practical aspects: A Review. Int. Agrophys. 2021, 35, 11–24. [Google Scholar] [CrossRef]
- Nasielski, J.; Grant, B.; Smith, W.; Niemeyer, C.; Janovicek, K.; Deen, B. Effect of nitrogen source, placement and timing on the environmental performance of economically optimum nitrogen rates in maize. Field Crops Res. 2020, 246, 107686. [Google Scholar] [CrossRef]
- Zhang, C.; Song, X.; Zhang, Y.; Wang, D.; Rees, R.M.; Ju, X. Using nitrification inhibitors and deep placement to tackle the trade-offs between NH3 and N2O emissions in global croplands. Glob. Chang. Biol. 2022, 28, 4409–4422. [Google Scholar] [CrossRef]
- Jiao, X.; Zhang, H.; Chong, W.; Li, X.; Zhang, F. Science and Technology Backyard: A novel approach to empower smallholder farmers for sustainable intensification of agriculture in China. J. Integr. Agric. 2019, 18, 1657–1666. [Google Scholar] [CrossRef]
- Wang, C.; Duan, J.; Ren, C.; Liu, H.; Reis, S.; Xu, J.; Gu, B. Ammonia Emissions from Croplands Decrease with Farm Size in China. Environ. Sci. Technol. 2022, 56, 9915–9923. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.; Song, Y.; Yu, C.; Ju, X. Overcoming socioeconomic barriers to reduce agricultural ammonia emission in China. Environ. Sci. Pollut. Res. 2020, 27, 25813–25817. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Yu, Q.; You, L.; Chen, K.; Tang, H.; Liu, J. Global cropping intensity gaps: Increasing food production without cropland expansion. Land Use Policy 2018, 76, 515–525. [Google Scholar] [CrossRef]
- Xu, D.; Zhu, Y.; Zhu, H.; Hu, Q.; Liu, G.; Wei, H.; Zhang, H. Effects of a One-Time Application of Controlled-Release Nitrogen Fertilizer on Yield and Nitrogen Accumulation and Utilization of Late Japonica Rice in China. Agriculture 2021, 11, 1041. [Google Scholar] [CrossRef]
- Cui, Z.; Zhang, H.; Chen, X.; Zhang, C.; Ma, W.; Huang, C.; Dou, Z. Pursuing sustainable productivity with millions of smallholder farmers. Nature 2018, 555, 363–366. [Google Scholar] [CrossRef]
- Zhang, Q.; Chu, Y.; Xue, Y.; Ying, H.; Chen, X.; Zhao, Y.; Cui, Z. Outlook of China’s agriculture transforming from smallholder operation to sustainable production. Glob. Food Secur. 2020, 26, 100444. [Google Scholar] [CrossRef]
- Hu, Y.; Schmidhalter, U. Urease inhibitors: Opportunities for meeting EU national obligations to reduce ammonia emission ceilings by 2030 in EU countries. Environ. Res. Lett. 2021, 16, 084047. [Google Scholar] [CrossRef]
- Wu, Y.; Xi, X.; Tang, X.; Luo, D.; Gu, B.; Lam, S.K.; Chen, D. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proc. Natl. Acad. Sci. USA 2018, 115, 7010–7015. [Google Scholar] [CrossRef] [Green Version]
- Bizimana, F.; Timilsina, A.; Dong, W.; Uwamungu, J.Y.; Li, X.; Wang, Y.; Hu, C. Effects of long-term nitrogen fertilization on N2O, N2 and their yield-scaled emissions in a temperate semi-arid agro-ecosystem. J. Soils Sediments 2021, 21, 1659–1671. [Google Scholar] [CrossRef]
- Li, J.; Wang, L.; Luo, Z.; Wang, E.; Wang, G.; Zhou, H.; Xu, S. Reducing N2O emissions while maintaining yield in a wheat–maize rotation system modelled by APSIM. Agric. Syst. 2021, 194, 103277. [Google Scholar] [CrossRef]
Jiangsu | Hubei | Sichuan | Heilongjiang | Jilin | Liaoning | Average | |
---|---|---|---|---|---|---|---|
Rice (%) | 62.7 | 47.8 | 54.0 | 21.8 | 53.5 | 68.3 | 7.5 |
Shandong | Hebei | Henan | Heilongjiang | Jilin | Liaoning | ||
Maize (%) | 62.7 | 47.8 | 54.0 | 21.8 | 53.5 | 68.3 | 51.4 |
Shandong | Hebei | Henan | |||||
Wheat (%) | 51.3 | 14.5 | 33.6 | 33.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, W.; Zeng, T.; Zhang, X.; Wu, H.; Liu, X.; Li, X.; Zhang, Y.; Hu, C. One-Time Deep Application of Nitrogen Fertilizer: A Potential Measure of Ammonia Mitigation in Grainland. Atmosphere 2022, 13, 1859. https://doi.org/10.3390/atmos13111859
Dong W, Zeng T, Zhang X, Wu H, Liu X, Li X, Zhang Y, Hu C. One-Time Deep Application of Nitrogen Fertilizer: A Potential Measure of Ammonia Mitigation in Grainland. Atmosphere. 2022; 13(11):1859. https://doi.org/10.3390/atmos13111859
Chicago/Turabian StyleDong, Wenxu, Tingting Zeng, Xiqun Zhang, Hongliang Wu, Xiuping Liu, Xiaoxin Li, Yuming Zhang, and Chunsheng Hu. 2022. "One-Time Deep Application of Nitrogen Fertilizer: A Potential Measure of Ammonia Mitigation in Grainland" Atmosphere 13, no. 11: 1859. https://doi.org/10.3390/atmos13111859
APA StyleDong, W., Zeng, T., Zhang, X., Wu, H., Liu, X., Li, X., Zhang, Y., & Hu, C. (2022). One-Time Deep Application of Nitrogen Fertilizer: A Potential Measure of Ammonia Mitigation in Grainland. Atmosphere, 13(11), 1859. https://doi.org/10.3390/atmos13111859