Evaluation of Atmospheric Features in Natural Disasters due Frontal Systems over Southern Brazil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of Study Area
2.2. Natural Disasters Data
2.3. Meteorological Data
2.4. Precipitation Data
2.5. Analysis Methods
Significance Test
3. Results and Discussion
3.1. Spatio-Temporal Analysis of Natural Disasters
3.2. Atmospheric Evaluation
4. Conclusions
- High CAPE values in the western SRB, especially in spring;
- Anticyclonic circulation in the high troposphere, similar to BA in all seasons;
- An atmosphere that is warmer in spring and colder in winter;
- Wind flow at 850 hPa due to SALLJ carrying specific moisture from low latitudes and jet streams with slightly higher wind speed values than climatology.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Narváez, L.; Lavell, A.; Pérez, G. La Gestión del Riesgo de Desastres: Un Enfoque Basado en Procesos; Secretaría General de la Comunidad Andina: Lima, Perú, 2009. [Google Scholar]
- Freitas, C.M.; de Carvalho, M.L.; de Ximenes, E.F.; Arraes, E.F.; Gomes, J.O. Vulnerabilidade socioambiental, redução de riscos de desastres e construção da resiliência: Lições do terremoto no Haiti e das chuvas fortes na Região Serrana, Brasil. Cien. Saude Colet. 2012, 17, 1577–1586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitas, C.M.; de Silva, D.R.X.; Sena, A.R.M.; de Silva, E.L.; Sales, L.B.F.; Carvalho, M.L.; de Mazoto, M.L.; Barcellos, C.; Costa, A.M.; Oliveira, M.L.C.; et al. Desastres naturais e saúde: Uma análise da situação do Brasil. Cien. Saude Colet. 2014, 19, 3645–3656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McBean, G.A. Prediction as a basis for planning and response. Water Int. 2002, 27, 70–76. [Google Scholar] [CrossRef]
- Munich, R.E. Topics—Annual Review: Natural Catastrophes 1999; Münchener Rück Munich Re Group: Munich, Germany, 2000. [Google Scholar]
- Munich, R.E. Topics—Annual Review: Natural Catastrophes 2001; Münchener Rück Munich Re Group: Munich, Germany, 2002. [Google Scholar]
- Wallemacq, P.; Below, R.; McClean, D. Economic Losses, Poverty & Disasters: 1998–2017; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Hong, B.; Bonczak, B.J.; Gupta, A.; Kontokosta, C.E. Measuring inequality in community resilience to natural disasters using large-scale mobility data. Nat. Commun. 2021, 12, 1870. [Google Scholar] [CrossRef]
- Smith, A.B.; Katz, R.W. US billion-dollar weather and climate disasters: Data sources, trends, accuracy and biases. Nat. Hazards 2013, 67, 387–410. [Google Scholar] [CrossRef]
- Smith, A.B.; Matthews, J.L. Quantifying uncertainty and variable sensitivity within the US billion-dollar weather and climate disaster cost estimates. Nat. Hazards 2015, 77, 1829–1851. [Google Scholar] [CrossRef]
- Munich, R. TOPICS GEO, Natural Catastrophes 2019, Analyses, Assessments, Positions; Münchener Rück Munich Re Group: Munich, Germany, 2020. [Google Scholar]
- Marengo, J.A.; Tomasella, J.; Soares, W.R.; Alves, L.M.; Nobre, C.A. Extreme climatic events in the Amazon basin. Theor. Appl. Climatol. 2012, 107, 73–85. [Google Scholar] [CrossRef]
- Easterling, D.R.; Evans, J.L.; Groisman, P.Y.; Karl, T.R.; Kunkel, K.E.; Ambenje, P. Observed variability and trends in extreme climate events: A brief review. Bull. Am. Meteorol. Soc. 2000, 81, 417–426. [Google Scholar] [CrossRef]
- Smith, K. Environmental Hazards: Assessing Risk and Reducing Disaster; Routledge: London, UK, 2013. [Google Scholar]
- CEPED UFSC Centro Universitário de Estudos e Pesquisas Sobre Desastres. Atlas Brasileiro de Desastres Naturais 1991 a 2010; CEPED UFSC: Florianópolis, Brazil, 2012. [Google Scholar]
- CEPED UFSC Centro Universitário de Estudos e Pesquisas Sobre Desastres. Atlas Brasileiro de Desastres Naturais 1991 a 2012, 2nd ed.; CEPED UFSC: Florianópolis, Brazil, 2013. [Google Scholar]
- Pezza, A.B.; Simmonds, I. The first South Atlantic hurricane: Unprecedented blocking, low shear and climate change. Geophys. Res. Lett. 2005, 32, L15712. [Google Scholar] [CrossRef] [Green Version]
- Pezza, A.B.; Simmonds, I.; Pereira Filho, A.J. Climate perspective on the large-scale circulation associated with the transition of the first South Atlantic hurricane. Int. J. Climatol. A J. R. Meteorol. Soc. 2009, 29, 1116–1130. [Google Scholar] [CrossRef]
- Marengo, J.A. Intense rainfall and floods claim at least 120 lives in Southern Brazil. State Clim. 2009, 90, S136–S137. [Google Scholar]
- Gouvea, R.L.; de Menezes, J.T.; Campos, C.C.G.; Moreira, G.D.F. Extremos de precipitação e ocorrência de deslizamentos de terra na bacia do rio Itajaí. Rev. Gestão Susten. Ambient. 2017, 6, 276. [Google Scholar] [CrossRef] [Green Version]
- Pinto, R.C.; Passos, E.; Caneparo, S. Classificação dos movimentos de massa ocorridos em março de 2011 na Serra da Prata, estado do Paraná. Geoingá 2012, 4, 3–27. [Google Scholar] [CrossRef]
- Dunn, R.J.H.; Alexander, L.V.; Donat, M.G.; Zhang, X.; Bador, M.; Herold, N.; Lippmann, T.; Allan, R.; Aguilar, E.; Barry, A.A.; et al. Development of an Updated Global Land In Situ-Based Data Set of Temperature and Precipitation Extremes: HadEX3. J. Geophys. Res. Atmos. 2020, 125, e2019JD032263. [Google Scholar] [CrossRef]
- Debortoli, N.S.; Camarinha, P.I.M.; Marengo, J.A.; Rodrigues, R.R. An index of Brazil’s vulnerability to expected increases in natural flash flooding and landslide disasters in the context of climate change. Nat. Hazards 2017, 86, 557–582. [Google Scholar] [CrossRef]
- Monteiro, M.A. Caracterização climática do estado de Santa Catarina: Uma abordagem dos principais sistemas atmosféricos que atuam durante o ano. Geosul 2001, 16, 69–78. [Google Scholar]
- Grimm, A.M. Clima da Região Sul do Brasil. In Tempo e Clima no Brasil; Cavalcanti, I.F.A., Ferreira, N.J., Justi da Silva, M.G.A., Silva Dias, M.A.F., Eds.; Oficina de Textos: São Paulo, Brazil, 2009; p. 464. ISBN 978-85-86238-92-5. [Google Scholar]
- Rodrigues, M.L.G.; Franco, D.; Sugahara, S. Climatologia de frentes frias no litoral de Santa Catarina. Rev. Bras. Geofis. 2004, 22, 135–151. [Google Scholar] [CrossRef]
- Catto, J.L.; Jakob, C.; Berry, G.; Nicholls, N. Relating global precipitation to atmospheric fronts. Geophys. Res. Lett. 2012, 39, L051736. [Google Scholar] [CrossRef]
- Ribeiro, B.Z.; Seluchi, M.E.; Chou, S.C. Synoptic climatology of warm fronts in Southeastern South America. Int. J. Climatol. 2016, 36, 644–655. [Google Scholar] [CrossRef]
- Marengo, J.; Cornejo, A.; Satyamurty, P.; Nobre, C.; Sea, W. Cold Surges in Tropical and Extratropical South America: The Strong Event in June 1994. Mon. Weather Rev. 1997, 125, 2759–2786. [Google Scholar] [CrossRef]
- Satyamurty, P.; Fonseca, J.F.B.; Bottino, M.J.; Seluchi, M.E.; Lourenço, M.C.M.; Gonçalves, L.G.G. de An early freeze in southern Brazil in April 1999 and its NWP guidance. Meteorol. Appl. 2002, 9, 113–128. [Google Scholar] [CrossRef]
- Andrade, K.M.; Cavalcanti, I.F.A. Climatologia dos sistemas frontais e padrões de comportamento para o verão na América do Sul. In Proceedings of the Congresso Brasileiro de Meteorologia, Fortaleza, Brazil, 28–30 August 2004; Volume 13. [Google Scholar]
- Satyamurty, P.; Seluchi, M.E. Characteristics and structure of an upper air cold vortex in the subtropics of South America. Meteorol. Atmos. Phys. 2007, 96, 203–220. [Google Scholar] [CrossRef]
- Seluchi, M.; Beu, C.; Andrade, K.M. Características das frentes frias causadoras de chuvas intensas no leste de Santa Catarina. Rev. Bras. Meteorol. 2017, 32, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Satyamurty, P.; De Mattos, L.F. Climatological lower tropospheric frontogenesis in the midlatitudes due to horizontal deformation and divergence. Mon. Weather Rev. 1989, 117, 1355–1364. [Google Scholar] [CrossRef]
- Cavalcanti, I.F.A.; Kousky, E.V. Frentes Frias Sobre o Brasil. In Tempo e Clima no Brasil, 1st ed.; Cavalcanti, I.F.A., Ferreira, N.J., Silva, M.G.A.J., Dias, M.A.F.S., Eds.; Editora Oficina de Textos: São Paulo, Brazil, 2009; Volume 1, pp. 243–287. [Google Scholar]
- Nedel, A.; Sausen, T.M.; Saito, S.M. Zoneamento dos desastres naturais ocorridos no estado do Rio Grande do Sul no período 1989-2009: Granizo e vendaval. Rev. Bras. Meteorol. 2012, 27, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Escobar, G.C.J.; Seluchi, M.E.; Andrade, K. Classicação Sinótica de Frentes Frias Associadas a Chuvas Extremas no Leste de Santa Catarina (SC). Rev. Bras. Meteorol. 2016, 31, 649–661. [Google Scholar] [CrossRef] [Green Version]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Sinopse Do Censo Demográfico. Available online: http://www.censo2010.ibge.gov.br (accessed on 5 September 2020).
- Instituto Brasileiro de Geografia e Estatística (IBGE). População em Áreas de Risco no Brasil; IBGE, Coordenação de Geografia: Rio de Janeiro, Brazil, 2018; ISBN 978-85-240-4468-7. [Google Scholar]
- Rodrigues, D.T.; Gonçalves, W.A.; Spyrides, M.H.C.; Santos e Silva, C.M.; de Souza, D.O. Spatial distribution of the level of return of extreme precipitation events in Northeast Brazil. Int. J. Climatol. 2020, 40, 5098–5113. [Google Scholar] [CrossRef]
- Rodrigues, D.T.; Gonçalves, W.A.; Spyrides, M.H.C.; de Melo Barbosa Andradeb, L.; de Souza, D.O.; de Araujo, P.A.A.; da Silva, A.C.N.; e Silva, C.M.S. Probability of occurrence of extreme precipitation events and natural disasters in the city of Natal, Brazil. Urban Clim. 2021, 35, 100753. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Tan, M.L.; Santo, H. Comparison of GPM IMERG, TMPA 3B42 and PERSIANN-CDR satellite precipitation products over Malaysia. Atmos. Res. 2018, 202, 63–76. [Google Scholar] [CrossRef]
- Reboita, M.S.; Gan, M.A.; Porfírio, R.; Custódio, I.S. Ciclones em Superfície nas Latitudes Austrais: Parte I—Revisão Bibliográfica. Rev. Bras. Meteorol. 2017, 32, 171–186. [Google Scholar] [CrossRef]
- Garreaud, R. Cold Air Incursions over Subtropical South America: Mean Structure and Dynamics. Mon. Weather Rev. 2000, 128, 2544–2559. [Google Scholar] [CrossRef]
- Mendes, D.; Souza, E.P.; Trigo, I.F.; Miranda, P.M.A. On precursors of South American cyclogenesis. Tellus Ser. A Dyn. Meteorol. Oceanogr. 2007, 59, 114–121. [Google Scholar] [CrossRef] [Green Version]
- dos Reis, J.S.; Gonçalves, W.A.; Mendes, D. Climatology of the dynamic and thermodynamic features of upper tropospheric cyclonic vortices in Northeast Brazil. Clim. Dyn. 2021, 57, 3413–3431. [Google Scholar] [CrossRef]
- Lemos, C.F.; Calbete, N. Sistemas frontais que atuaram no litoral do Brasil (período 1987–1995). Bol. Climanálise Edição Comem. 1996, 10, 131–135. [Google Scholar]
- Chuvas no RS Causam Morte e Deixam Mais de mil Desabrigados. Folha de S. Paulo. 2017. Available online: https://www1.folha.uol.com.br/cotidiano/2017/03/1865879-chuvas-no-rs-deixam-dois-mortos-oito-desaparecidos-e-desabrigados.shtml#:~:text=Chuvas%20no%20RS%20causam%20morte%20e%20deixam%20mais%20de%20mil%20desabrigados,-Compartilhar%20via%20Facebook&text=Um%20homem%20de%2024%20anos,para%20Canoas%2C%20um%20munic%C3%ADpio%20pr%C3%B3ximo (accessed on 14 July 2022).
- Sousa, W. Mau Tempo Deixa dez Cidades em Estado de Emergência no Rio Grande do Sul; Agência Brasil. 2017. Available online: https://agenciabrasil.ebc.com.br/geral/noticia/2017-05/mau-tempo-deixa-dez-cidades-em-estado-de-emergencia-no-rio-grande-do-sul (accessed on 14 July 2022).
- Pegorim, J. Surpreendente Chuva de Maio de 2017 no Brasil; ClimaTempo. 2017. Available online: https://www.climatempo.com.br/noticia/2017/06/03/surpreendente-chuva-de-maio-de-2017-no-brasil-4137 (accessed on 14 July 2022).
- Buonafina, J. Governo Reconhece Situação de Emergência em Mais 14 Municípios Gaúchos; Agência Brasil. 2017. Available online: https://agenciabrasil.ebc.com.br/geral/noticia/2017-06/governo-reconhece-situacao-de-emergencia-em-mais-14-municipios-gauchos (accessed on 15 July 2022).
- Buonafina, J. Governo Reconhece Situação de Emergência por Chuvas em Mais 10 Cidades do Sul; Agência Brasil. 2017. Available online: https://agenciabrasil.ebc.com.br/geral/noticia/2017-06/governo-reconhece-situacao-de-emergencia-por-chuvas-em-mais-10-cidades-do-sul (accessed on 15 July 2022).
- Amâncio, T. País Tem um Quarto das Cidades em Emergência Causada por Seca ou Chuva. Folha de S. Paulo. 2017. Available online: https://m.folha.uol.com.br/amp/cotidiano/2017/08/1913593-pais-tem-23-das-cidades-em-situacao-de-emergencia-por-inundacoes-e-secas.shtml (accessed on 15 July 2022).
- Chuva no Sul Deixa 25 Cidades em Situação de Emergência. Folha de S. Paulo. 2017. Available online: https://g1.globo.com/jornal-nacional/noticia/2017/10/chuva-no-sul-deixa-25-cidades-em-situacao-de-emergencia.html (accessed on 16 July 2022).
- Defesa Civil Nacional Reconhece Situação de Emergência em 27 Cidades; Agência Brasil. 2019. Available online: https://agenciabrasil.ebc.com.br/geral/noticia/2019-12/defesa-civil-nacional-reconhece-situacao-de-emergencia-em-27-cidades (accessed on 16 July 2022).
- CASTRO, A.L.C. Manual de Desastres, 1st ed.; Secretaria Nacional de Defesa Civil: Brasília, Brazil, 2003. [Google Scholar]
- Emanuel, K.A. Atmospheric Convection; Oxford University Press, Inc.: New York, NY, USA, 1994; ISBN 0-19-506630-8. [Google Scholar]
- Nascimento, E.D.L. Previsão de tempestades severas utilizando-se parâmetros convectivos e modelos de mesoescala: Uma estratégia operacional adotável no Brasil ? Rev. Bras. Meteorol. 2005, 20, 121–140. [Google Scholar]
- Seluchi, M.E.; Saulo, A.C.; Nicolini, M.; Satyamurty, P. The Northwestern Argentinean Low: A Study of Two Typical Events. Mon. Weather Rev. 2003, 131, 2361–2378. [Google Scholar] [CrossRef]
- Bonner, W.D. Climatology of the Low Level Jet. Mon. Weather Rev. 1968, 96, 833–850. [Google Scholar] [CrossRef]
- Marengo, J.A.; Soares, W.R.; Saulo, C.; Nicolini, M. Climatology of the Low-Level Jet East of the Andes as Derived from the NCEP–NCAR Reanalyses: Characteristics and Temporal Variability. J. Clim. 2004, 17, 2261–2280. [Google Scholar] [CrossRef]
- Marengo, J.A. The South American low-level jet east of the Andes during the 1999 LBA-TRMM and LBA-WET AMC campaign. J. Geophys. Res. 2002, 107, 8079. [Google Scholar] [CrossRef]
- Salio, P.; Nicolini, M.; Saulo, A.C. Chaco low-level jet events characterization during the austral summer season. J. Geophys. Res. Atmos. 2002, 107, 231. [Google Scholar] [CrossRef]
- Salio, P.; Nicolini, M.; Zipser, E.J. Mesoscale Convective Systems over Southeastern South America and Their Relationship with the South American Low-Level Jet. Mon. Weather Rev. 2007, 135, 1290–1309. [Google Scholar] [CrossRef] [Green Version]
- Vera, C.; Baez, J.; Douglas, M.; Emmanuel, C.B.; Marengo, J.; Meitin, J.; Nicolini, M.; Nogues-Paegle, J.; Paegle, J.; Penalba, O.; et al. The South American Low-Level Jet Experiment. Bull. Am. Meteorol. Soc. 2006, 87, 63–78. [Google Scholar] [CrossRef]
- Pezzi, L.P.; Rosa, M.B.; Batista, N.N.M. A Corrente de Jato sobre a América do Sul. Climanálise-Bol. Monit. Análise Clim. Ed. Comem. 1996, 10, 19. Available online: http://climanalise.cptec.inpe.br/~rclimanl/boletim/cliesp10a/jatclim.html#:~:text=Esta%20corrente%20%C3%A9%20mais%20regular,)%20e%20Reiter%20(1969) (accessed on 25 July 2022).
AUTUMN | Temperature (°C) | Specific Hum. (kg kg−1) | Pressure (mb) | CAPE (J kg−1) | Wind Vel (m s−1) | Wind Dir (°) | Precip. (mm) | ||||||||||||||
Mean | sd | Anom | Mean | sd | Anom | Mean | sd | Anom | Mean | sd | Anom | Mean | sd | Anom | Mean | sd | Anom | Mean | sd | ||
19.0 | 3.2 | 0.13 | 0.01219 | 0.00218 | 0.00644 | 1016.2 | 3.1 | 0.6 | 190.0 | 329.2 | −3.58 | 2.2 | 1.5 | 1.3 | 140.8 | 120.5 | 65.5 | 31.0 | 41.6 | 2 days before | |
19.4 | 3.0 | 0.50 | 0.01280 | 0.00188 | 0.00705 | 1015.5 | 3.6 | −0.1 | 292.1 | 409.0 | 98.52 | 2.4 | 1.2 | 1.5 | 117.8 | 105.0 | 42.6 | 47.9 | 44.1 | 1 day before | |
18.6 | 2.9 | −0.22 | 0.01268 | 0.00219 | 0.00693 | 1014.4 | 4.1 | −1.3 | 256.9 | 413.2 | 63.30 | 2.1 | 1.0 | 1.2 | 206.7 | 118.2 | 131.5 | 11.8 | 15.7 | Disaster day | |
WINTER | Temperature (°C) | Specific hum. (kg kg−1) | Pressure (mb) | CAPE (J kg−1) | Wind vel (m s−1) | Wind dir (°) | Precip. (mm) | ||||||||||||||
Mean | sd | Anom | Mean | sd | anom. | Mean | sd | Anom | Mean | sd | Anom | Mean | sd | Anom | Mean | sd | Anom | Mean | sd | ||
14.3 | 2.7 | −4.63 | 0.00906 | 0.00194 | 0.00345 | 1017.4 | 3.7 | 1.8 | 60.7 | 117.5 | −127.0 | 2.4 | 1.8 | 1.7 | 138.7 | 94.2 | 56.3 | 39.9 | 33.5 | 2 days before | |
14.5 | 2.8 | −4.38 | 0.00962 | 0.00159 | 0.00401 | 1015.0 | 4.3 | −0.6 | 85.1 | 126.3 | −102.6 | 2.2 | 1.5 | 1.5 | 170.0 | 105.9 | 87.6 | 21.8 | 32.3 | 1 day before | |
14.6 | 2.6 | −4.34 | 0.00951 | 0.00180 | 0.00390 | 1013.3 | 4.6 | −2.3 | 77.8 | 80.0 | −109.9 | 2.2 | 1.6 | 1.4 | 198.3 | 94.3 | 115.9 | 2.9 | 7.2 | Disaster day | |
SPRING | Temperature (°C) | Specific hum. (kg kg−1) | Pressure (mb) | CAPE (J kg−1) | Wind vel (m s−1) | Wind dir (°) | Precip. (mm) | ||||||||||||||
Mean | sd | Anom | Mean | sd | Anom | Mean | sd | Anom | Mean | sd | Anom | Mean | sd | Anom | Mean | sd | Anom | Mean | sd | ||
19.2 | 2.6 | 1.23 | 0.01245 | 0.00185 | 0.00689 | 1013.6 | 3.8 | −2.0 | 280.3 | 341.8 | 88.4 | 2.6 | 1.8 | 1.7 | 110.0 | 70.2 | 22.3 | 32.7 | 30.2 | 2 days before | |
19.3 | 3.0 | 1.23 | 0.01273 | 0.00197 | 0.00716 | 1013.2 | 4.0 | −2.4 | 342.0 | 397.6 | 150.0 | 2.7 | 2.1 | 1.8 | 119.9 | 83.1 | 32.2 | 38.0 | 45.3 | 1 day before | |
18.8 | 2.4 | 0.59 | 0.01229 | 0.00256 | 0.00672 | 1013.7 | 4.5 | −1.8 | 227.8 | 243.1 | 35.9 | 2.8 | 2.0 | 1.9 | 132.7 | 79.6 | 45.0 | 10.7 | 16.9 | Disaster day |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis, J.S.d.; Gonçalves, W.A.; Souza, D.O.d.; Mendes, D. Evaluation of Atmospheric Features in Natural Disasters due Frontal Systems over Southern Brazil. Atmosphere 2022, 13, 1886. https://doi.org/10.3390/atmos13111886
Reis JSd, Gonçalves WA, Souza DOd, Mendes D. Evaluation of Atmospheric Features in Natural Disasters due Frontal Systems over Southern Brazil. Atmosphere. 2022; 13(11):1886. https://doi.org/10.3390/atmos13111886
Chicago/Turabian StyleReis, Jean Souza dos, Weber Andrade Gonçalves, Diego Oliveira de Souza, and David Mendes. 2022. "Evaluation of Atmospheric Features in Natural Disasters due Frontal Systems over Southern Brazil" Atmosphere 13, no. 11: 1886. https://doi.org/10.3390/atmos13111886
APA StyleReis, J. S. d., Gonçalves, W. A., Souza, D. O. d., & Mendes, D. (2022). Evaluation of Atmospheric Features in Natural Disasters due Frontal Systems over Southern Brazil. Atmosphere, 13(11), 1886. https://doi.org/10.3390/atmos13111886