Human Exposure Assessment to Air Pollutants in AC Filters from Agricultural, Industrial, and Residential Areas
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Study Area and Description of Sampling Sites
2.2. Collection of Indoor Dust Samples Using AC Filters
2.3. Analyses of the AC Filter Dust Samples
2.3.1. Determination of Potentially Toxic Metals
2.3.2. Health Risk Assessment
Parameters | Units | Values [4,35,36,37,38,42,43,44] |
---|---|---|
Concentrations of toxic metals (C) | mg kg−1 | |
Exposure frequency (EF) | Day year−1 | 350 |
Exposure duration (ED) | Year | 30 (Adults), 6 (Children) |
Average time (AT) | Days | 70 × 365 |
Inhalation rate (InhR) | m3 day−1 | 20 (Adults), 7.6 (Children) |
Exposed skin area (SA) | m2 | 5700 (Adults), 2800 (Children) |
Dermal absorption factor (ABS) | Unit less | 0.1 (Cd), 0.04 (Cr), 0.1 (Cu), 0.001 (Mn), 0.006 (Pb), 0.02 (Zn) |
Reference doses (Rfd) | mg kg−1 day−1 | Ingestion RfD: 1.0 × 10−3 (Cd), 3.0 × 10−3 (Cr), 3.7 × 10−2 (Cu), 2.4 × 10−2 (Mn), 3.5 × 10−3 (Pb), 3.0 × 10−1 (Zn), Dermal RfD: 1.0 × 10−5 (Cd), 6.00 × 10−5 (Cr), 0.012 (Cu), 4.6 × 10−2 (Mn), 5.25 × 10−5 (Pb), 6.0 × 10−2(Zn), Inhalation RfD: 1.0 × 10−5 (Cd), 3.00 × 10−3 (Cr), 0.04 (Cu), 5.0 × 10−5 (Mn), 3.5 × 10−3 (Pb), 3.0 × 10−2 (Zn), |
Slope factor (SF) | mg kg−1 day−1 | Inhalation: 6.3 (Cd), 42 (Cr), Ingestion: 8.5 × 10−3 (Pb) |
2.3.3. Isolation and Characterization of Bacteria
2.3.4. Isolation and Characterization of Fungi
2.4. Statistical Analyses
3. Results and Discussion
3.1. The Concentration of Heavy Metals
3.2. Health Risk Assessment
3.3. Biological characterization of Air-Conditioners Filters Dust Samples
3.3.1. Population Density of Bacteria
3.3.2. Morphological Characterization of Bacteria by Gram’s Stain
3.3.3. Antibiotic Sensitivity Test
3.3.4. Hemolysis Activity Test
3.3.5. Population Density and Community Structure of Fungi
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, X.; Zhang, Y.; Luo, J.; Wang, T.; Lian, H.; Ding, Z. Bioaccessibility and Health Risk of Arsenic, Mercury and Other Metals in Urban Street Dusts from a Mega-City, Nanjing, China. Environ. Pollut. 2011, 159, 1215–1221. [Google Scholar] [CrossRef] [PubMed]
- Layton, D.W.; Beamer, P.I. Migration of Contaminated Soil and Airborne Particulates to Indoor Dust. Environ. Sci. Technol. 2009, 43, 8199–8205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, J.W.; Wallace, L.A.; Camann, D.E.; Dickey, P.; Gilbert, S.G.; Lewis, R.G.; Takaro, T.K. Monitoring and Reducing Exposure of Infants to Pollutants in House Dust. Rev. Environ. Contam. Toxicol. 2009, 201, 1–39. [Google Scholar] [CrossRef]
- Hou, S.; Zheng, N.; Tang, L.; Ji, X.; Li, Y.; Hua, X. Pollution Characteristics, Sources, and Health Risk Assessment of Human Exposure to Cu, Zn, Cd and Pb Pollution in Urban Street Dust across China between 2009 and 2018. Environ. Int. 2019, 128, 430–437. [Google Scholar] [CrossRef]
- Ibanez, Y.; Le Bot, B.; Glorennec, P. House-Dust Metal Content and Bioaccessibility: A Review. Eur. J. Mineral. 2010, 22, 629–637. [Google Scholar] [CrossRef]
- Praveena, S.M.; Abdul Mutalib, N.S.; Aris, A.Z. Determination of Heavy Metals in Indoor Dust From Primary School (Sri Serdang, Malaysia): Estimation of the Health Risks. Environ. Forensics 2015, 16, 257–263. [Google Scholar] [CrossRef]
- Turner, A. Oral Bioaccessibility of Trace Metals in Household Dust: A Review. Environ. Geochem. Health 2011, 33, 331–341. [Google Scholar] [CrossRef]
- Annesi-Maesano, I. Indoor Exposition to Molds and Health Outcome. Rev. Allergy Clin. Immunol. 2013, 23, 21–25. [Google Scholar]
- WHO. WHO Guidelines for Indoor Air Quality: Dampness and Mould; WHO Regional Office Europe: Copenhagen, Denmark, 2009.
- Haleem Khan, A.A.; Mohan Karuppayil, S. Fungal Pollution of Indoor Environments and Its Management. Saudi J. Biol. Sci. 2012, 19, 405–426. [Google Scholar] [CrossRef] [Green Version]
- Aslam, I.; Mumtaz, M.; Qadir, A.; Jamil, N.; Baqar, M.; Mahmood, A.; Ahmad, S.R.; Zhang, G. Organochlorine Pesticides (OCPs) in Air-Conditioner Filter Dust of Indoor Urban Setting: Implication for Health Risk in a Developing Country. Indoor Air 2021, 31, 807–817. [Google Scholar] [CrossRef]
- Bi, C.; Maestre, J.P.; Li, H.; Zhang, G.; Givehchi, R.; Mahdavi, A.; Kinney, K.A.; Siegel, J.; Horner, S.D.; Xu, Y. Phthalates and Organophosphates in Settled Dust and HVAC Filter Dust of US Low-Income Homes: Association with Season, Building Characteristics, and Childhood Asthma. Environ. Int. 2018, 121, 916–930. [Google Scholar] [CrossRef] [PubMed]
- Lucattini, L.; Poma, G.; Covaci, A.; de Boer, J.; Lamoree, M.H.; Leonards, P.E.G. A Review of Semi-Volatile Organic Compounds (SVOCs) in the Indoor Environment: Occurrence in Consumer Products, Indoor Air and Dust. Chemosphere 2018, 201, 466–482. [Google Scholar] [CrossRef] [PubMed]
- Blanchard, O.; Glorennec, P.; Mercier, F.; Bonvallot, N.; Chevrier, C.; Ramalho, O.; Mandin, C.; Bot, B. Le Semivolatile Organic Compounds in Indoor Air and Settled Dust in 30 French Dwellings. Environ. Sci. Technol. 2014, 48, 3959–3969. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Yang, D.; Wang, X.; Huang, N.; Zhang, X.; Zhang, D.; Fu, J. Factors Influencing on the Bioaccessibility of Polybrominated Diphenyl Ethers in Size-Specific Dust from Air Conditioner Filters. Chemosphere 2013, 93, 2603–2611. [Google Scholar] [CrossRef] [PubMed]
- Gunathilake, T.M.S.U.; Ching, Y.C.; Kadokami, K. An Overview of Organic Contaminants in Indoor Dust, Their Health Impact, Geographical Distribution and Recent Extraction/Analysis Methods. Environ. Geochem. Health 2021, 44, 677–713. [Google Scholar] [CrossRef]
- Wu, J.; Alipouri, Y.; Luo, H.; Zhong, L. Ultraviolet Photocatalytic Oxidation Technology for Indoor Volatile Organic Compound Removal: A Critical Review with Particular Focus on Byproduct Formation and Modeling. J. Hazard. Mater. 2022, 421, 126766. [Google Scholar] [CrossRef]
- Ma, X.; Lv, H.; Yang, L.; Zhang, Z.; Sun, Z.; Wu, H. Removal Characteristics of Organic Pollutants by the Adsorbent Injection Coupled with Bag Filtering System. J. Hazard. Mater. 2021, 405, 124193. [Google Scholar] [CrossRef]
- Gonzalez-Martin, J.; Kraakman, N.J.R.; Perez, C.; Lebrero, R.; Munoz, R. A State-of-the-Art Review on Indoor Air Pollution and Strategies for Indoor Air Pollution Control. Chemosphere 2021, 262, 128376. [Google Scholar] [CrossRef]
- Aizpuru, A.; Malhautier, L.; Roux, J.C.; Fanlo, J.L. Biofiltration of a Mixture of Volatile Organic Compounds on Granular Activated Carbon. Biotechnol. Bioeng. 2003, 83, 479–488. [Google Scholar] [CrossRef]
- Haaland, D.; Siegel, J.A. Quantitative Filter Forensics for Indoor Particle Sampling. Indoor Air 2017, 27, 364–376. [Google Scholar] [CrossRef]
- Siddique, N.; Majid, A.; Tufail, M. Elemental Analysis of Dust Trapped in Air Conditioner Filters for the Assessment of Lahore City’s Air Quality. J. Radioanal. Nucl. Chem. 2011, 290, 691–699. [Google Scholar] [CrossRef]
- Cheng, Z.; Chen, L.J.; Li, H.H.; Lin, J.Q.; Yang, Z.B.; Yang, Y.X.; Xu, X.X.; Xian, J.R.; Shao, J.R.; Zhu, X.M. Characteristics and Health Risk Assessment of Heavy Metals Exposure via Household Dust from Urban Area in Chengdu, China. Sci. Total Environ. 2018, 619–620, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Radwan, S.M.A.; Abdel-Aziz, R.A. Evaluation of Microbial Content of Indoor Air in Hot Arid Climate. Int. J. Environ. Sci. Technol. 2019, 16, 5429–5438. [Google Scholar] [CrossRef]
- Mahfouz, M.M.; Yigiterhan, O.; Elnaiem, A.E.; Hassan, H.M.; Alfoldy, B. Elemental Compositions of Particulate Matter Retained on Air Condition Unit’s Filters at Greater Doha, Qatar. Environ. Geochem. Health 2019, 41, 2533–2548. [Google Scholar] [CrossRef] [Green Version]
- Ali, M.U.; Liu, G.; Yousaf, B.; Abbas, Q.; Ullah, H.; Munir, M.A.M.; Zhang, H. Compositional Characteristics of Black-Carbon and Nanoparticles in Air-Conditioner Dust from an Inhabitable Industrial Metropolis. J. Clean. Prod. 2018, 180, 34–42. [Google Scholar] [CrossRef]
- Noris, F.; Siegel, J.A.; Kinney, K.A. Biological and Metal Contaminants in HVAC Filter Dust. In Proceedings of the ASHRAE Transactions, Louisville, KY, USA, 20–24 June 2009. [Google Scholar]
- Noris, F.; Siegel, J.A.; Kinney, K.A. Evaluation of HVAC Filters as a Sampling Mechanism for Indoor Microbial Communities. Atmos. Environ. 2011, 45, 338–346. [Google Scholar] [CrossRef]
- Ali, M.U.; Liu, G.; Yousaf, B.; Abbas, Q.; Ullah, H.; Munir, M.A.M.; Fu, B. Pollution Characteristics and Human Health Risks of Potentially (Eco)Toxic Elements (PTEs) in Road Dust from Metropolitan Area of Hefei, China. Chemosphere 2017, 181, 111–121. [Google Scholar] [CrossRef]
- Alamdar, A.; Ali Musstjab Akber Shah Eqani, S.; Waqar Ali, S.; Sohail, M.; Bhowmik, A.K.; Cincinelli, A.; Subhani, M.; Ghaffar, B.; Ullah, R.; Huang, Q.; et al. Human Arsenic Exposure via Dust across the Different Ecological Zones of Pakistan. Ecotoxicol. Environ. Saf. 2016, 126, 219–227. [Google Scholar] [CrossRef]
- Al-Harbi, M.; Alhajri, I.; Whalen, J.K. Health Risks Associated with the Polycyclic Aromatic Hydrocarbons in Indoor Dust Collected from Houses in Kuwait. Environ. Pollut. 2020, 266, 115054. [Google Scholar] [CrossRef]
- Ali, N.; Eqani, S.A.M.A.S.; Nazar, E.; Alhakamy, N.A.; Rashid, M.I.; Shahzad, K.; Zeb, J.; Shen, H.; Ismail, I.M.I.; Albar, H.M.S.A. Arsenic and Lead in the Indoor Residential Settings of Different Socio-Economic Status; Assessment of Human Health Risk via Dust Exposure. Environ. Sci. Pollut. Res. 2021, 28, 13288–13299. [Google Scholar] [CrossRef]
- Ministry of Environment Water and Agriculture (MEWA) Statistical Reports 2018. Available online: https://www.mewa.gov.sa/ar/InformationCenter/Researchs/Reports/Pages/default.aspx (accessed on 4 November 2022).
- AOAC. Official Methods of Analysis, 18th ed.; Association of Officiating Analytical Chemists: Washington, DC, USA, 2005. [Google Scholar]
- USEPA. Superfund Public Health Evaluation Manual; United States Environment Protection Agency: Washington, DC, USA, 1986.
- USEPA. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment); Office of Emergency and Remedial Response, United States Environment Protection Agency: Washington, DC, USA, 2009.
- USEPA. Regional Screening Level (RSL) Summary Table; United States Environment Protection Agency: Washington, DC, USA, 2019.
- Ferreira-Baptista, L.; De Miguel, E. Geochemistry and Risk Assessment of Street Dust in Luanda, Angola: A Tropical Urban Environment. Atmos. Environ. 2005, 39, 4501–4502. [Google Scholar] [CrossRef]
- Chen, X.; Lu, X.; Yang, G. Sources Identification of Heavy Metals in Urban Topsoil from inside the Xi’an Second Ringroad, NW China Using Multivariate Statistical Methods. Catena 2012, 98, 73–78. [Google Scholar] [CrossRef]
- Ubaid Ali, M.; Liu, G.; Yousaf, B.; Ullah, H.; Irshad, S.; Ahmed, R.; Hussain, M.; Rashid, A. Evaluation of Floor-Wise Pollution Status and Deposition Behavior of Potentially Toxic Elements and Nanoparticles in Air Conditioner Dust during Urbanistic Development. J. Hazard. Mater. 2019, 365, 186–195. [Google Scholar] [CrossRef] [PubMed]
- Taati, A.; Salehi, M.H.; Mohammadi, J.; Mohajer, R.; Díez, S. Human Health Risk Assessment of Arsenic and Trace Metals in Atmospheric Dust of Arak Industrial Area, Iran. Environ. Sci. Pollut. Res. 2021, 28, 36837–36849. [Google Scholar] [CrossRef] [PubMed]
- Zheng, N.; Liu, J.; Wang, Q.; Liang, Z. Health Risk Assessment of Heavy Metal Exposure to Street Dust in the Zinc Smelting District, Northeast of China. Sci. Total Environ. 2010, 408, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Mehmood, K.; Bao, Y.; Abbas, R.; Petropoulos, G.P.; Ahmad, H.R.; Abrar, M.M.; Mustafa, A.; Abdalla, A.; Lasaridi, K.; Fahad, S.; et al. Pollution Characteristics and Human Health Risk Assessments of Toxic Metals and Particle Pollutants via Soil and Air Using Geoinformation in Urbanized City of Pakistan. Environ. Sci. Pollut. Res. 2021, 28, 58206–58220. [Google Scholar] [CrossRef]
- Ahmad, H.R.; Mehmood, K.; Sardar, M.F.; Maqsood, M.A.; Rehman, M.Z.U.; Zhu, C.; Li, H. Integrated Risk Assessment of Potentially Toxic Elements and Particle Pollution in Urban Road Dust of Megacity of Pakistan. Hum. Ecol. Risk Assess. An Int. J. 2019, 26, 1810–1831. [Google Scholar] [CrossRef]
- Sarker, M.M.R.; Islam, K.N.; Huri, H.Z.; Rahman, M.; Imam, H.; Hosen, M.B.; Mohammad, N.; Sarker, M.Z.I. Studies of the Impact of Occupational Exposure of Pharmaceutical Workers on the Development of Antimicrobial Drug Resistance. J. Occup. Health 2014, 56, 260–270. [Google Scholar] [CrossRef] [Green Version]
- Al-Rajhi, M.A.; Seaward, M.R.D.; Al-Aamer, A.S. Metal Levels in Indoor and Outdoor Dust in Riyadh, Saudi Arabia. Environ. Int. 1996, 22, 315–324. [Google Scholar] [CrossRef]
- Mathee, A.; Röllin, H.; Levin, J.; Naik, I. Lead in Paint: Three Decades Later and Still a Hazard for African Children? Environ. Health Perspect. 2007, 115, 321–322. [Google Scholar] [CrossRef]
- Holmgren, G.G.S.; Meyer, M.W.; Chaney, R.L.; Daniels, R.B. Cadmium, Lead, Zinc, Copper, and Nickel in Agricultural Soils of the United States of America. J. Environ. Qual. 1993, 22, 335–348. [Google Scholar] [CrossRef]
- Xiong, X.; Yanxia, L.; Wei, L.; Chunye, L.; Wei, H.; Ming, Y. Copper Content in Animal Manures and Potential Risk of Soil Copper Pollution with Animal Manure Use in Agriculture. Resour. Conserv. Recycl. 2010, 54, 985–990. [Google Scholar] [CrossRef]
- Bertolucci, P.H.F. Chronic Exposure to the Fungicide Maneb May Produce Symptoms and Signs of CNS Manganese Intoxication. Neurology 1988, 38, 550. [Google Scholar] [CrossRef]
- Emara, A.M.; el-Ghawabi, S.H.; Madkour, O.I.; el-Samra, G.H. Chronic Manganese Poisoning in the Dry Battery Industry. Br. J. Ind. Med. 1971, 28, 78–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, G.; Chen, Z.; Xu, S.; Zhang, J.; Wang, L.; Bi, C.; Teng, J. Potentially Toxic Metal Contamination of Urban Soils and Roadside Dust in Shanghai, China. Environ. Pollut. 2008, 156, 251–260. [Google Scholar] [CrossRef]
- Wei, X.; Gao, B.; Wang, P.; Zhou, H.; Lu, J. Pollution Characteristics and Health Risk Assessment of Heavy Metals in Street Dusts from Different Functional Areas in Beijing, China. Ecotoxicol. Environ. Saf. 2015, 112, 186–192. [Google Scholar] [CrossRef]
- Mohmand, J.; Eqani, S.A.M.A.S.; Fasola, M.; Alamdar, A.; Mustafa, I.; Ali, N.; Liu, L.; Peng, S.; Shen, H. Human Exposure to Toxic Metals via Contaminated Dust: Bio-Accumulation Trends and Their Potential Risk Estimation. Chemosphere 2015, 132, 142–151. [Google Scholar] [CrossRef]
- Liu, E.; Yan, T.; Birch, G.; Zhu, Y. Pollution and Health Risk of Potentially Toxic Metals in Urban Road Dust in Nanjing, a Mega-City of China. Sci. Total Environ. 2014, 476, 522–531. [Google Scholar] [CrossRef]
- Li, H.; Qian, X.; Hu, W.; Wang, Y.; Gao, H. Chemical Speciation and Human Health Risk of Trace Metals in Urban Street Dusts from a Metropolitan City, Nanjing, SE China. Sci. Total Environ. 2013, 456, 212–221. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.; Cui, X.; Li, H.; Qian, X.; Wang, C.; Sun, Y. Bioaccessibility, Sources and Health Risk Assessment of Trace Metals in Urban Park Dust in Nanjing, Southeast China. Ecotoxicol. Environ. Saf. 2016, 128, 161–170. [Google Scholar] [CrossRef]
- Bellinger, D.C. Teratogen Update: Lead and Pregnancy. Birth Defects Res. Part A-Clin. Mol. Teratol. 2005, 73, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.H.; Wang, F.Y.; Zhou, W.L.; Yang, Y.J. Heavy Metal Pollution in Street Dusts from Different Functional Zones of Luoyang City and Its Potential Ecological Risk. Huanjing Kexue/Environmental Sci. 2012, 33, 253–259. [Google Scholar]
- Keshavarzi, B.; Tazarvi, Z.; Rajabzadeh, M.A.; Najmeddin, A. Chemical Speciation, Human Health Risk Assessment and Pollution Level of Selected Heavy Metals in Urban Street Dust of Shiraz, Iran. Atmos. Environ. 2015, 119, 1–10. [Google Scholar] [CrossRef]
- Lee, S.A.; Adhikari, A.; Grinshpun, S.A.; McKay, R.; Shukla, R.; Reponen, T. Personal Exposure to Airborne Dust and Microorganisms in Agricultural Environments. J. Occup. Environ. Hyg. 2006, 3, 118–130. [Google Scholar] [CrossRef] [PubMed]
- Stryjakowska-Sekulska, M.; Piotraszewska-Pajak, A.; Szyszka, A.; Nowicki, M.; Filipiak, M. Microbiological Qualtiy of Indoor Air in University Rooms. Polish J. Environ. Stud. 2007, 16, 623. [Google Scholar]
- Borrego, S.; Guiamet, P.; Gómez de Saravia, S.; Batistini, P.; Garcia, M.; Lavin, P.; Perdomo, I. The Quality of Air at Archives and the Biodeterioration of Photographs. Int. Biodeterior. Biodegrad. 2010, 64, 139–145. [Google Scholar] [CrossRef]
- Ross, C.; De Menezes, J.R.; Estivalet Svidzinski, T.I.; Albino, U.; Andrade, G. Studies on Fungal and Bacterial Population of Air-Conditioned Environments. Brazilian Arch. Biol. Technol. 2004, 47, 827–835. [Google Scholar] [CrossRef] [Green Version]
- Khalfallah, H.M.; Abukhres, O.M.; Hawad, A.F.; Mukhtar, I.A.; Alrasheed, A. Air Conditioners as a Source of Bacterial Contamination in an Indoor Environment. J. Pure Appl. Sci. 2015. [Google Scholar]
- Gibbs, S.G.; Green, C.F.; Tarwater, P.M.; Mota, L.C.; Mena, K.D.; Scarpino, P.V. Isolation of Antibiotic-Resistant Bacteria from the Air Plume Downwind of a Swine Confined or Concentrated Animal Feeding Operation. Environ. Health Perspect. 2006, 114, 1032–1037. [Google Scholar] [CrossRef] [Green Version]
- Safatov, A.S.; Andreeva, I.S.; Belan, B.D.; Buryak, G.A.; Emelyanova, E.K.; Jaenicke, R.; Panchenko, M.V.; Pechurkina, N.I.; Puchkova, L.I.; Repin, V.E.; et al. To What Extent Can Viable Bacteria in Atmospheric Aerosols Be Dangerous for Humans? Clean-Soil Air Water 2008, 36, 564–571. [Google Scholar] [CrossRef]
- Chopra, A.K.; Xu, X.J.; Ribardo, D.; Gonzalez, M.; Kuhl, K.; Peterson, J.W.; Houston, C.W. The Cytotoxic Enterotoxin of Aeromonas Hydrophila Induces Proinflammatory Cytokine Production and Activates Arachidonic Acid Metabolism in Macrophages. Infect. Immun. 2000, 68, 2808–2818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janda, J.M.; Abbott, S.L. The Genus Aeromonas: Taxonomy, Pathogenicity, and Infection. Clin. Microbiol. Rev. 2010, 23, 35–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aydogdu, H.; Asan, A.; Otkun, M.T.; Ture, M. Monitoring of Fungi and Bacteria in the Indoor Air of Primary Schools in Edirne City, Turkey. Indoor Built Environ. 2005, 14, 411–425. [Google Scholar] [CrossRef]
- Nevalainen, A.; Täubel, M.; Hyvärinen, A. Indoor Fungi: Companions and Contaminants. Indoor Air 2015, 25, 125–156. [Google Scholar] [CrossRef]
- Al-Abdalall, A.; Al-dakheel, S.; Al-Abkari, H. Impact of Air-Conditioning Filters on Microbial Growth and Indoor Air Pollution. In Low-Temperature Technologies; Morosuk, T., Sultan, M., Eds.; BoD-Books on Demand: Norderstedt, Germany, 2019; pp. 179–206. [Google Scholar]
- Tang, W.; Kuehn, T.H.; Simcik, M.F. Effects of Temperature, Humidity and Air Flow on Fungal Growth Rate on Loaded Ventilation Filters. J. Occup. Environ. Hyg. 2015, 12, 525–537. [Google Scholar] [CrossRef]
- Mata, T.M.; Felgueiras, F.; Martins, A.A.; Monteiro, H.; Ferraz, M.P.; Oliveira, G.M.; Gabriel, M.F.; Silva, G.V. Indoor Air Quality in Elderly Centers: Pollutants Emission and Health Effects. Environments 2022, 9, 86. [Google Scholar] [CrossRef]
- Hamada, N.; Fujita, T. Effect of Air-Conditioner on Fungal Contamination. Atmos. Environ. 2002, 36, 5443–5448. [Google Scholar] [CrossRef]
- Luengas, A.; Barona, A.; Hort, C.; Gallastegui, G.; Platel, V.; Elias, A. A Review of Indoor Air Treatment Technologies. Rev. Environ. Sci. Bio/Technology 2015, 14, 499–522. [Google Scholar] [CrossRef]
- Batterman, S.A.; Burge, H. HVAC Systems as Emission Sources Affecting Indoor Air Quality: A Critical Review. HVAC\&R Res. 1995, 1, 61–78. [Google Scholar]
- Pigeot-Remy, S.; Real, P.; Simonet, F.; Hernandez, C.; Vallet, C.; Lazzaroni, J.C.; Vacher, S.; Guillard, C. Inactivation of Aspergillus Niger Spores from Indoor Air by Photocatalytic Filters. Appl. Catal. B Environ. 2013, 134, 167–173. [Google Scholar] [CrossRef]
Heavy Metal | Cd | Cr | Pb | Cu | Fe | Mn |
---|---|---|---|---|---|---|
Cr | −0.059 | |||||
Pb | −0.127 | 0.348 | ||||
Cu | −0.053 | −0.052 | 0.023 | |||
Fe | 0.007 | 0.542 * | 0.792 * | 0.163 | ||
Mn | 0.024 | 0.258 | 0.837 * | 0.159 | 0.858 * | |
Zn | −0.002 | 0.218 | 0.641 * | 0.487 * | 0.743 * | 0.714 * |
Group | Area | Cd | Cr | Cu | Mn | Pb | Zn |
---|---|---|---|---|---|---|---|
HQing | |||||||
Adult | Al-Nabiah | 0.001 | 0.008 | 0.016 | 0.005 | 0.025 | 0.003 |
Al-Qatif-Agricultural | 0.005 | 0.023 | 0.006 | 0.014 | 0.047 | 0.006 | |
Al-Qatif-Industrial | 0.030 | 0.059 | 0.006 | 0.010 | 0.043 | 0.003 | |
Al-Qatif-Residential | 0.012 | 0.009 | 0.005 | 0.005 | 0.021 | 0.002 | |
Saihat-Residential | 0.002 | 0.009 | 0.003 | 0.006 | 0.028 | 0.001 | |
Children | Al-Nabiah | 0.005 | 0.039 | 0.077 | 0.026 | 0.119 | 0.012 |
Al-Qatif-Agricultural | 0.024 | 0.109 | 0.030 | 0.067 | 0.219 | 0.026 | |
Al-Qatif-Industrial | 0.142 | 0.278 | 0.029 | 0.048 | 0.201 | 0.014 | |
Al-Qatif-Residential | 0.058 | 0.042 | 0.022 | 0.028 | 0.099 | 0.007 | |
Saihat-Residential | 0.009 | 0.041 | 0.013 | 0.030 | 0.133 | 0.006 | |
HDinh | |||||||
Adult | Al-Nabiah | 0.0001 | 1.23 × 10−6 | 2.43 × 10−6 | 0.0004 | 3.76 × 10−7 | 3.96 × 10−6 |
Al-Qatif-Agricultural | 0.0008 | 3.44 × 10−6 | 9.52 × 10−7 | 0.0010 | 6.90 × 10−7 | 8.31 × 10−6 | |
Al-Qatif-Industrial | 0.0045 | 8.77 × 10−6 | 9.02 × 10−7 | 0.0007 | 6.34 × 10−7 | 4.37 × 10−6 | |
Al-Qatif-Residential | 0.0018 | 1.34 × 10−6 | 6.96 × 10−7 | 0.0004 | 3.12 × 10−7 | 2.37 × 10−6 | |
Saihat-Residential | 0.0003 | 1.31 × 10−6 | 4.16 × 10−7 | 0.0005 | 4.20 × 10−7 | 1.84 × 10−6 | |
Children | Al-Nabiah | 0.0001 | 1.09 × 10−6 | 2.16 × 10−6 | 0.0004 | 3.33 × 10−7 | 3.52 × 10−6 |
Al-Qatif-Agricultural | 0.0007 | 3.05 × 10−6 | 8.44 × 10−7 | 0.0009 | 6.12 × 10−7 | 7.37 × 10−6 | |
Al-Qatif-Industrial | 0.0040 | 7.77 × 10−6 | 8.00 × 10−7 | 0.0006 | 5.62 × 10−7 | 3.88 × 10−6 | |
Al-Qatif-Residential | 0.0016 | 1.19 × 10−6 | 6.17 × 10−7 | 0.0004 | 2.77 × 10−7 | 2.10 × 10−6 | |
Saihat-Residential | 0.0003 | 1.16 × 10−6 | 3.69 × 10−7 | 0.0004 | 3.73 × 10−7 | 1.63 × 10−6 | |
HQderm | |||||||
Adult | Al-Nabiah | 0.427 | 0.067 | 0.022 | 1.16 × 10−5 | 0.041 | 0.001 |
Al-Qatif-Agricultural | 2.085 | 0.187 | 0.009 | 3.01 × 10−5 | 0.075 | 0.002 | |
Al-Qatif-Industrial | 12.15 | 0.476 | 0.008 | 2.15 × 10−5 | 0.069 | 0.001 | |
Al-Qatif-Residential | 4.989 | 0.073 | 0.006 | 1.25 × 10−5 | 0.034 | 0.001 | |
Saihat-Residential | 0.810 | 0.071 | 0.004 | 1.35 × 10−5 | 0.046 | 0.001 | |
Children | Al-Nabiah | 6.998 | 1.091 | 0.360 | 1.91 × 10−4 | 0.668 | 0.018 |
Al-Qatif-Agricultural | 34.15 | 3.056 | 0.141 | 4.92 × 10−4 | 1.226 | 0.037 | |
Al-Qatif-Industrial | 199.0 | 7.790 | 0.134 | 3.53 × 10−4 | 1.126 | 0.019 | |
Al-Qatif-Residential | 81.70 | 1.194 | 0.103 | 2.04 × 10−4 | 0.555 | 0.010 | |
Saihat-Residential | 13.27 | 1.163 | 0.061 | 2.21 × 10−4 | 0.747 | 0.008 |
Group | Area | Cd | Cr | Cu | Mn | Pb | Zn |
---|---|---|---|---|---|---|---|
Adult | Al-Nabiah | 0.428 | 0.075 | 0.038 | 0.006 | 0.066 | 0.004 |
Al-Qatif-Agricultural | 2.09 | 0.210 | 0.015 | 0.015 | 0.121 | 0.008 | |
Al-Qatif-Industrial | 12.2 | 0.535 | 0.014 | 0.011 | 0.112 | 0.004 | |
Al-Qatif-Residential | 5.00 | 0.082 | 0.011 | 0.006 | 0.055 | 0.002 | |
Saihat-Residential | 0.813 | 0.079 | 0.006 | 0.007 | 0.074 | 0.002 | |
Children | Al-Nabiah | 7.00 | 1.13 | 0.437 | 0.027 | 0.787 | 0.030 |
Al-Qatif-Agricultural | 34.2 | 3.16 | 0.171 | 0.069 | 1.44 | 0.063 | |
Al-Qatif-Industrial | 199 | 8.07 | 0.162 | 0.049 | 1.33 | 0.033 | |
Al-Qatif-Residential | 81.8 | 1.24 | 0.125 | 0.028 | 0.654 | 0.018 | |
Saihat-Residential | 13.3 | 1.20 | 0.075 | 0.031 | 0.881 | 0.014 |
Group | Area | Pb | Cd | Cr |
---|---|---|---|---|
Adult | Al-Nabiah | 5.52 × 10−10 | 9.92 × 10−9 | 1.55 × 10−7 |
Al-Qatif-Agricultural | 1.01 × 10−10 | 4.84 × 10−8 | 4.33 × 10−7 | |
Al-Qatif-Industrial | 9.32 × 10−10 | 2.82 × 10−7 | 1.10 × 10−7 | |
Al-Qatif-Residential | 4.59 × 10−10 | 1.16 × 10−7 | 1.69 × 10−7 | |
Saihat-Residential | 0.15 | 1.88 × 10−8 | 1.65 × 10−7 | |
Children | Al-Nabiah | 4.90 × 10−10 | 8.80 × 10−9 | 1.37 × 10−7 |
Al-Qatif-Agricultural | 8.99 × 10−10 | 4.29 × 10−8 | 3.84 × 10−7 | |
Al-Qatif-Industrial | 8.26 × 10−10 | 2.50 × 10−7 | 9.79 × 10−7 | |
Al-Qatif-Residential | 4.07 × 10−10 | 1.03 × 10−7 | 1.50 × 10−7 | |
Saihat-Residential | 5.48 × 10−10 | 1.67 × 10−8 | 1.46 × 10−7 |
Area | Stain | Comment | |
---|---|---|---|
Bacteria | Agricultural | G. negative | Single rods, producing mucus or exopolymer, single short rods |
G. positive | Long rods in chain | ||
Residential | G. positive | Bacillus sp. & long rods, Bacillus, thick and long rods in a chain, rods in a chain with endospores | |
G. negative | Thick and short rods | ||
Industrial | G. positive | Staphylococcus sp., short rods, and endospore-forming | |
Area | Comment | ||
Fungi | Agricultural | Stachybotrys chartarum, Cladosporium, and black molds | |
Residential | Yeast and candida | ||
Industrial | Cladosporium sp., Penicillium sp., Aspergillus sp., Green molds, and Black Aspergillus sp. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AlMulla, A.A.; Berekaa, M.; Saifullah; Dahlawi, S. Human Exposure Assessment to Air Pollutants in AC Filters from Agricultural, Industrial, and Residential Areas. Atmosphere 2022, 13, 1899. https://doi.org/10.3390/atmos13111899
AlMulla AA, Berekaa M, Saifullah, Dahlawi S. Human Exposure Assessment to Air Pollutants in AC Filters from Agricultural, Industrial, and Residential Areas. Atmosphere. 2022; 13(11):1899. https://doi.org/10.3390/atmos13111899
Chicago/Turabian StyleAlMulla, Abdulaziz Abdulrahman, Mahmoud Berekaa, Saifullah, and Saad Dahlawi. 2022. "Human Exposure Assessment to Air Pollutants in AC Filters from Agricultural, Industrial, and Residential Areas" Atmosphere 13, no. 11: 1899. https://doi.org/10.3390/atmos13111899
APA StyleAlMulla, A. A., Berekaa, M., Saifullah, & Dahlawi, S. (2022). Human Exposure Assessment to Air Pollutants in AC Filters from Agricultural, Industrial, and Residential Areas. Atmosphere, 13(11), 1899. https://doi.org/10.3390/atmos13111899