Effects of Outdoor Air Pollutants on Indoor Environment Due to Natural Ventilation
Abstract
:1. Introduction
2. Methods
2.1. Overview of the Measurement Room
2.2. Data Collection
- (1)
- Ventilation volume
- (2)
- Experimental conditions
3. Results
3.1. Ventilation Volume
- (1)
- Ventilation fan (Condition 1: Off; Condition 2: On)
- (2)
- The effects of ventilation fans and natural ventilation (Conditions 3–5)
- (3)
- The effects of air conditioner blast mode (conditions 6–8)
3.2. Changes in Particulate Concentration
- (1)
- Ventilation fan (Condition 1: Off, Condition 2: On)
- (2)
- The effects of ventilation fans and natural ventilation (Conditions 3–5)
- (3)
- The effect of air conditioner (conditions 6–8)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdullah, H.K.; Alibaba, H.Z. A Performance-Based Window Design and Evaluation Model for Naturally Ventilated Offices. Buildings 2022, 12, 1141. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; Santos, M.; Gomes, M.G.; Duarte, R. Impact of Natural Ventilation on the Thermal and Energy Performance of Buildings in a Mediterranean Climate. Buildings 2019, 9, 123. [Google Scholar] [CrossRef] [Green Version]
- METI. Available online: https://www.meti.go.jp/press/2021/10/20211022005/20211022005-1.pdf (accessed on 9 March 2021).
- WHO. Available online: https://www.who.int/publications/i/item/who-convened-global-study-of-origins-of-sars-cov-2-china-part (accessed on 9 March 2021).
- WHO. Available online: https://www.who.int/news-room/q-a-detail/sars-cov-2-evolution (accessed on 12 March 2021).
- WHO. Available online: https://www.who.int/europe/emergencies/situations/covid-19 (accessed on 12 March 2021).
- Ministry of Health, Labour and Welfare. Available online: https://www.mhlw.go.jp/content/10900000/000622211.pdf (accessed on 10 April 2021).
- Ministry of Health, Labour and Welfare. Available online: https://www.mhlw.go.jp/stf/covid-19/kenkou-iryousoudan.html (accessed on 10 April 2021).
- Ministry of Health, Labour and Welfare. Available online: https://corona.go.jp/emergency/pdf/kanki_teigen_2220719.pdf (accessed on 9 March 2021).
- Gohara, T.; Iwashita, G.; Tanabe, S. Behavior of opening windows as a measure for covid-19 and its impact on ventilation rate in the classrooms of an elementary school in Tokyo. J. Environ. Eng. 2022, 87, 347–358. [Google Scholar] [CrossRef]
- Khafaie, M.; Ojha, A.; Salvi, S.S.; Yajnik, C.S. Methodological approach in air pollution health effects studies. J. Air Pollut. Health 2016, 1, 219–226. Available online: https://japh.tums.ac.ir/index.php/japh/article/view/50 (accessed on 12 July 2021).
- Sawatsubashi, M. Pollinosis with PM2.5 dust and yellow sand dispersal: How to treat the trifecta of distress. Jibii Rinshou 2019, 65, 190–195. [Google Scholar] [CrossRef]
- Segawa, K. Regional project for the prevention and control of dust and sandstorms in Northeast Asia. J. Environ. Conserv. Eng. 2006, 35, 525–530. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Nakaguchi, Y.; Mukai, S. An analysis of individual Asian-dust particles collected at Higashiosaka, Japan in 2007 and 2008. Chikyukagaku 2009, 43, 91–101. [Google Scholar] [CrossRef]
- Dejima, Y. Relationship between the lung function and the exposure to Dust and Sandstorm(DSS) of the COPD patients living in the Gobi-Desert of the Northern China: Analysis of the clinical records in the region of frequent DSS exposure. Jpn. J. Health Hum. Ecol. 2010, 76, 86–94. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, K. Fine Particulate Matter(PM2.5)-Generation and Control. Jpn. TAPPI J. 2013, 67, 1377–1381. [Google Scholar] [CrossRef]
- Keywood, M.; Hibberd, M.F.; Selleck, P.W.; Desservettaz, M.; Cohen, D.D.; Stelcer, E.; Atanacio, A.J.; Scorgie, Y.; Chang, L.T.-C. Sources of Particulate Matter in the Hunter Valley, New South Wales, Australia. Atmosphere 2020, 11, 4. [Google Scholar] [CrossRef] [Green Version]
- Talaiekhozani, A.; Ghaffarpasand, O.; Talaei, M.R.; Neshat, N.; Eydivandi, B. Evaluation of emission inventory of air pollutants from railroad and air transportation in Isfahan metropolitan in 2016. J. Air Pollut. Health 2017, 2, 1–18. Available online: https://japh.tums.ac.ir/index.php/japh/article/view/86 (accessed on 5 May 2021).
- Hashemi, A.; Shirkani, A.; Hashemi, M.; Salimi, M.D.; Behzadi, S.; Fakharian, A.; Farrokhi, S. Role of air pollution on pathogenesis of asthma and allergic diseases. J. Air Pollut. Health 2017, 2, 205–210. [Google Scholar]
- Obolkin, V.; Molozhnikova, E.; Shikhovtsev, M.; Netsvetaeva, O.; Khodzher, T. Sulfur and Nitrogen Oxides in the Atmosphere of Lake Baikal: Sources, Automatic Monitoring, and Environmental Risks. Atmosphere 2021, 12, 1348. [Google Scholar] [CrossRef]
- Hadei, M.; Hashemi Nazari, S.S.; Yarahmadi, E.; Kermani, M.; Yarahmadi, M.; Naghdali, Z.; Shahsavani, A. Estimation of lung cancer mortality attributed to long-term exposure to PM2.5 in 15 Iranian cities during 2015–2016; an AIRQ+ modeling. J. Air Pollut. Health 2017, 2, 19–26. Available online: https://japh.tums.ac.ir/index.php/japh/article/view/91 (accessed on 10 May 2021).
- Guo, X.; Lin, Y.; Lin, Y.; Zhong, Y.; Yu, H.; Huang, Y.; Yang, J.; Cai, Y.; Liu, F.; Li, Y.; et al. PM2.5 induces pulmonary microvascular injury in COPD via METTL16-mediated m6A modification. Environ. Pollut. 2022, 303, 119115. [Google Scholar] [CrossRef]
- Liu, G.; Li, Y.; Zhou, J.; Xu, J.; Yang, B. PM2.5 deregulated microRNA and inflammatory microenvironment in lung injury. Environ. Toxicol. Pharmacol. 2022, 91, 103832. [Google Scholar] [CrossRef]
- Yoshida, H. About Pollinosis. Jpn. Soc. Biometeorol. J. 2003, 40, 61–67. [Google Scholar] [CrossRef]
- Seki, M. Background of Pollinosis. J. Juntendo Med. 2000, 46, 22–26. [Google Scholar] [CrossRef]
- Ito, K. 4. Pollinosis. J. Jpn. Soc. Intern. Med. 1992, 81, 1502–1508. [Google Scholar] [CrossRef] [Green Version]
- Yonekura, S.; Gotoh, M.; Kaneko, S.; Maekawa, Y.; Okubo, K.; Okamoto, Y. Disease-Modifying Effect of Japanese Cedar Pollen Sublingual Immunotherapy Tablets. J. Allergy Clin. Immunol. 2021, 9, 4103–4116.e14. [Google Scholar] [CrossRef]
- Saitou, Y. Pathophysiology and Treatment of Pollinosis. J. Jpn. Soc. Intern. Med. 1999, 88, 87–91. [Google Scholar] [CrossRef] [Green Version]
- Arinami, Y.; Akabayashi, S.; Tominaga, Y.; Sakaguchi, J.; Takano, Y.; Honda, M. Proposal of an evaluation method for natural cross-ventilation performance considering flow fluctuation. J. Environ. AIJ 2016, 81, 589–597. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.-L.; Nazaroff, W.W. Particle Penetration through Windows, Indoor Air 2002. In Proceedings of the 9th International Conference on Indoor Air Quality and Climate, Monterey, CA, USA, 6–18 November 2002; pp. 862–867. [Google Scholar]
- Ministry of the Environment, Japan. Available online: https://www.env.go.jp/chemi/anzen/kafun/manual/2_chpt2.pdf (accessed on 20 September 2021).
- Menzel, A.; Matiu, M.; Michaelis, R.; Jochner, S. Indoor birch pollen concentrations differ with ventilation scheme, room location, and meteorological factors. Indoor Air 2017, 27, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Kuwahara, R.; Kim, H. Studying the indoor environment and comfort of a university laboratory: Air-conditioning operation and natural ventilation used as a countermeasure against COVID-19. Buildings 2022, 12, 953. [Google Scholar] [CrossRef]
Building | Y University, Faculty of Engineering Main Building 2F Laboratory Room 202 |
Floor area | 57.6 m2 |
Volume | 149 m3 |
Ceiling height | 2.6 m |
Ventilating facilities | ventilation fan (300φ) × 1 (300 m3/h) |
Air conditioner | Equipment specification: YZCP71MM Yanmar Holdings Co., Ltd., Osaka, Japan, Multi-type indoor unit × 2 Ceiling cassette type (four-direction ejection) |
Air filter: Antifungal antibacterial resin net (long life) Gravimetric method: 60–90% | |
Air flow: Mode 1: 20.0 m3/min Mode 2: 16.0 m3/min Mode 3: 12.5 m3/min |
CO2 | Measuring Device | USB CO2 Logger (TR-76Ui; T&D) |
Range | 0–9999 ppm | |
Recording Interval | 1 min | |
Particle | Measuring Device | AeroTrak Handheld Particle Counter 9303 (TSI) |
Range of Measurement | 0.3–10 μm | |
Particle Size Division | 0.3,·1.0,·5.0 μm | |
Recording Interval | 1 min |
Condition | Window | Door | Ventilation Fan | Air Conditioner | ||||
---|---|---|---|---|---|---|---|---|
A | B | C | D | R | L | |||
1 | closed | closed | OFF | OFF | ||||
2 | ON | |||||||
3 | 30 cm | closed | 10 cm | closed | ||||
4 | 10 cm | closed | 10 cm | 10 cm | ||||
5 | 5 cm | 5 cm | ||||||
6 | 30 cm | closed | 10 cm | closed | ON | |||
7 | 10 cm | closed | 10 cm | 10 cm | ||||
8 | 5 cm | 5 cm |
Condition | Particle Size | Average | Median | Standard Deviation |
---|---|---|---|---|
case 1 | 0.3 μm | 0.44 | 0.44 | 0.02 |
1.0 μm | 0.16 | 0.15 | 0.03 | |
5.0 μm | 0.03 | 0.02 | 0.03 | |
case 2 | 0.3 μm | 0.54 | 0.57 | 0.11 |
1.0 μm | 0.49 | 0.47 | 0.11 | |
5.0 μm | 0.57 | 0.32 | 0.52 | |
case 3 | 0.3 μm | 0.65 | 0.70 | 0.12 |
1.0 μm | 0.58 | 0.64 | 0.13 | |
5.0 μm | 0.42 | 0.43 | 0.12 | |
case 4 | 0.3 μm | 0.74 | 0.74 | 0.03 |
1.0 μm | 0.70 | 0.70 | 0.05 | |
5.0 μm | 0.33 | 0.33 | 0.08 | |
case 5 | 0.3 μm | 0.65 | 0.66 | 0.06 |
1.0 μm | 0.59 | 0.60 | 0.06 | |
5.0 μm | 0.38 | 0.40 | 0.10 | |
case 6 | 0.3 μm | 0.79 | 0.80 | 0.05 |
1.0 μm | 0.64 | 0.64 | 0.04 | |
5.0 μm | 0.50 | 0.38 | 0.30 | |
case 7 | 0.3 μm | 0.89 | 0.93 | 0.09 |
1.0 μm | 0.72 | 0.75 | 0.09 | |
5.0 μm | 0.49 | 0.44 | 0.18 | |
case 8 | 0.3 μm | 0.98 | 0.97 | 0.04 |
1.0 μm | 0.86 | 0.86 | 0.05 | |
5.0 μm | 0.76 | 0.74 | 0.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tamuro, A.; Kuwahara, R.; Kim, H. Effects of Outdoor Air Pollutants on Indoor Environment Due to Natural Ventilation. Atmosphere 2022, 13, 1917. https://doi.org/10.3390/atmos13111917
Tamuro A, Kuwahara R, Kim H. Effects of Outdoor Air Pollutants on Indoor Environment Due to Natural Ventilation. Atmosphere. 2022; 13(11):1917. https://doi.org/10.3390/atmos13111917
Chicago/Turabian StyleTamuro, Ayame, Ryoichi Kuwahara, and Hyuntae Kim. 2022. "Effects of Outdoor Air Pollutants on Indoor Environment Due to Natural Ventilation" Atmosphere 13, no. 11: 1917. https://doi.org/10.3390/atmos13111917
APA StyleTamuro, A., Kuwahara, R., & Kim, H. (2022). Effects of Outdoor Air Pollutants on Indoor Environment Due to Natural Ventilation. Atmosphere, 13(11), 1917. https://doi.org/10.3390/atmos13111917