The Impact of Stochastic Perturbations in Physics Variables for Predicting Surface Solar Irradiance
Abstract
:1. Introduction
2. Adding Stochastic Perturbations to Physics Schemes
3. Experiment Design
3.1. Numerical Simulations
3.2. Satellite-Based Data Sets
4. Results
4.1. Diurnal and Annual Evaluation Errors
4.2. Evaluation of Spatial Distribution of Errors
4.3. Uncertainty Quantification
4.4. Cloud Detection Evaluations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jimenez, P.A.; Hacker, J.P.; Dudhia, J.; Haupt, S.E.; Ruiz-Arias, J.A.; Gueymard, C.A.; Thompson, G.; Eidhammer, T.; Deng, A. WRF-Solar: Description and clear sky assessment of an augmented nwp model for solar power prediction. Bull. Amer. Met. Soc. 2016, 97, 1249–1264. [Google Scholar] [CrossRef]
- Skamarock, W.C.; Klemp, J.B.; Dudhia, J.; Gill, D.O.; Liu, Z.; Berner, J.; Wang, W.; Powers, J.G.; Duda, M.G.; Barker, D. A Description of the Advanced Research WRF Version 4; NCAR Technical Note. NCAR/TN-556+STR; NCAR: Boulder, CO, USA, 2019; 145p. [Google Scholar] [CrossRef]
- Jiménez, P.A.; Alessandrini, S.; Haupt, S.E.; Deng, A.; Kosovic, B.; Lee, J.A.; delle Monache, L. The role of unresolved clouds on short-range global horizontal irradiance predictability. Mon. Wea. Rev. 2016, 144, 3099–3107. [Google Scholar] [CrossRef]
- Alapaty, K.; Herwehe, J.A.; Otte, T.L.; Nolte, C.G.; Russell Bullock, O.; Mallard, M.S.; Kain, J.S.; Dudhia, J. Introducing subgrid-scale cloud feedbacks to radiation for regional meteorological and climate modeling. Geophys. Res. Lett. 2000, 39, L24809. [Google Scholar] [CrossRef] [Green Version]
- Berg, L.K.; Gustafson, W.I., Jr.; Kassianov, E.I.; Deng, L. Evaluation of a modified scheme for shallow convection: Implementation of CuP and case studies. Mon. Wea. Rev. 2013, 141, 134–147. [Google Scholar] [CrossRef]
- Herwehe, J.; Alapaty, K.; Spero, T.; Nolte, C.G. Increasing the credibility of regional climate simulations by introducing subgrid-scale cloud-radiation interactions. J. Geophys. Res. Atmos. 2014, 119, 5317–5330. [Google Scholar] [CrossRef]
- Deng, A.; Gaudet, B.J.; Dudhia, J.; Alapaty, K. Implementation and evaluation of a new shallow convection scheme in WRF. In Proceedings of the 26th Conference on Weather Analysis and Forecasting/22nd Conference on Numerical Weather Prediction, Atlanta, GA, USA, 2–6 February 2014; American Meteorological Society: Boston, MA, USA, 2014. Available online: https://ams.confex.com/ams/94Annual/webprogram/Paper236925.html (accessed on 18 November 2022).
- Pedruzo-Bagazgoitia, X.; Jiménez, P.A.; Dudhia, J.; Vilà-Guerau de Arellano, J. Shallow cumulus representation and its interaction with radiation and surface at the convection grey zone. Mon. Wea. Rev. 2019, 147, 2467–2483. [Google Scholar] [CrossRef]
- Bauer, P.; Thorpe, A.; Brunet, G. The quiet revolution of numerical weather prediction. Nature 2015, 525, 47–55. [Google Scholar] [CrossRef]
- Sweeney, C.; Bessa, R.J.; Browell, J.; Pinson, P. The future of forecasting for renewable energy. WIREs Energy Environ. 2020, 9, e365. [Google Scholar] [CrossRef]
- Li, B.; Zhang, J. A review on the integration of probabilistic solar forecasting in power systems. Sol. Energy 2020, 210, 68–86. [Google Scholar] [CrossRef]
- Takamatsu, T.; Ohtake, H.; Oozeki, T.; Nakaegawa, T.; Honda, Y.; Kazumori, M. Regional Solar Irradiance Forecast for Kanto Region by Support Vector Regression Using Forecast of Meso-Ensemble Prediction System. Energies 2021, 14, 3245. [Google Scholar] [CrossRef]
- Yang, D.; Wang, W.; Gueymard, C.A.; Hong, T.; Kleissl, J.; Huang, J.; Perez, M.J.; Perez, R.; Bright, J.M.; Xia, X.; et al. A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality. Renew. Sustain. Energy Rev. 2022, 161, 112348. [Google Scholar] [CrossRef]
- Molteni, F.; Palmer, T.N. Predictability and finite-time instability of the northern winter circulation. Quart. J. Roy. Meteor. Soc. 1993, 119, 269–298. [Google Scholar] [CrossRef]
- Toth, Z.; Kalnay, E. Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc. 1993, 74, 2317–2330. [Google Scholar] [CrossRef]
- Buizza, R.; Palmer, T. The singular-vector structure of the atmospheric global circulation. J. Atmos. Sci. 1995, 52, 1434–1456. [Google Scholar] [CrossRef]
- Buizza, R.; Houtekamer, P.L.; Toth, Z.; Pellerin, G.; Wei, M.; Zhu, Y. A comparison of the ECMWF, MSC, and NCEP global ensemble prediction systems. Mon. Wea. Rev. 2005, 133, 1076–1097. [Google Scholar] [CrossRef]
- Hacker, J.P.; Ha, S.Y.; Snyder, C.; Berner, J.; Eckel, F.A.; Kuchera, E.; Pocernich, M.; Rugg, S.; Schramm, J.; Wang, X. The U.S. Air Force Weather Agency’s mesoscale ensemble: Scientific description and performance results. Tellus 2011, 63A, 625–641. [Google Scholar] [CrossRef] [Green Version]
- Berner, J.; Ha, S.-Y.; Hacker, J.P.; Fournier, A.; Snyder, C. Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multiphysics representations. Mon. Wea. Rev. 2011, 139, 1972–1995. [Google Scholar] [CrossRef] [Green Version]
- Berner, J.; Fossell, K.; Ha, S.-Y.; Hacker, J.P.; Snyder, C. Increasing the skill of probabilistic forecasts: Understanding performance improvements from model-error representations. Mon. Wea. Rev. 2015, 143, 1295–1320. [Google Scholar] [CrossRef]
- Knutti, R.; Masson, D.; Gettelman, A. Climate model genealogy: Generation CMIP5 and how we got there. Geo Phys. Res. Lett. 2013, 40, 1194–1199. [Google Scholar] [CrossRef]
- Eckel, F.A.; Mass, C.F. Aspects of effective mesoscale, short-range ensemble forecasting. Wea. Forecast. 2005, 20, 328–350. [Google Scholar] [CrossRef]
- Jankov, I.; Berner, J.; Beck, J.; Jiang, H.; Olson, J.B.; Grell, G.; Smirnova, T.G.; Benjamin, S.G.; Brown, J.M. A performance comparison between multiphysics and stochastic approaches within a North American RAP ensemble. Mon. Wea. Rev. 2017, 145, 1161–1179. [Google Scholar] [CrossRef]
- Palmer, T.N. A nonlinear dynamical perspective on model error: A proposal for non-local stochastic-dynamic parameterization in weather and climate prediction. Quart. J. Roy. Meteor. Soc. 2001, 127, 279–304. [Google Scholar] [CrossRef]
- Berner, J.; Shutts, G.; Leutbecher, M.; Palmer, T. A spectral stochastic kinetic energy backscatter scheme and its impact on flow-depended predictability in the ECMWF ensemble prediction system. J. Atmos. Sci. 2009, 66, 603–626. [Google Scholar] [CrossRef]
- Bowler, N.E.; Arribas, A.; Mylne, K.R.; Robertson, K.B.; Beare, S.E. The MOGREPS short-range ensemble prediction system. Quart. J. Roy. Meteor. Soc. 2008, 134, 703–722. [Google Scholar] [CrossRef]
- Sanchez, C.; Williams, K.D.; Collins, M. Improved stochastic physics schemes for global weather and climate models. Quart. J. Roy. Meteor. Soc. 2016, 142, 147–159. [Google Scholar] [CrossRef]
- Shutts, G.J. A kinetic energy backscatter algorithm for use in ensemble prediction systems. Quart. J. Roy. Meteor. Soc. 2005, 131, 3079–3102. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Kim, J.-H.; Jimenez, P.A.; Sengupta, M.; Dudhia, J.; Xie, Y.; Golnas, A.; Giering, R. An efficient method to identify uncertainties of WRF-Solar variables in forecasting solar irradiance using a tangent linear sensitivity analysis. Sol. Energy 2021, 220, 509–522. [Google Scholar] [CrossRef]
- Jiménez, P.A.; Yang, J.; Kim, J.-H.; Sengupta, M.; Dudhia, J. Assessing the WRF-Solar model performance using satellite-derived irradiance from the National Solar Radiation Database. J. Appl. Meteor. Climatol. 2022, 61, 129–142. [Google Scholar] [CrossRef]
- Kim, J.-H.; Jimenez, P.A.; Sengupta, M.; Yang, J.; Dudhia, J.; Alessandrini, S.; Xie, Y. The WRF-solar ensemble prediction system to provide solar irradiance probabilistic forecasts. IEEE J. Photovolt. 2022, 12, 141–144. [Google Scholar] [CrossRef]
- Thompson, G.; Field, P.R.; Rasmussen, R.M.; Hall, W.D. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Nakanishi, M.; Niino, H. Development of an improved turbulence closure model for the atmospheric boundary layer. J. Meteor. Soc. Japan. 2009, 87, 895–912. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Dudhia, J. Coupling an advanced land surface hydrology model with the penn state/ncar mm5 modeling system. part 1: Model description and implementation. Mon. Wea. Rev. 2001, 129, 569–586. [Google Scholar] [CrossRef]
- Deng, A.; Seaman, N.L.; Kain, J.S. A shallow-convection parameterization for mesoscale models. Part I: Submodel description and preliminary applications. J. Atmos. Sci. 2003, 60, 34–56. [Google Scholar] [CrossRef]
- Xie, Y.; Sengupta, M.; Dudhia, J. A Fast All-sky Radiation Model for Solar applications (FARMS): Algorithm and performance evaluation. Sol. Energy 2016, 135, 435–445. [Google Scholar] [CrossRef] [Green Version]
- Mocko, D.M.; Cotton, W.R. Evaluation of fractional cloudiness parameterizations for use in a messoscale model. J. Atmos. Sci. 1995, 52, 2884–2901. [Google Scholar] [CrossRef]
- Palmer, T.N.; Buizza, R.; Doblas-Reyes, F.; Jung, T.; Leutbecher, M.; Shutts, G.; Steinheimer, M.; Weisheimer, A. Stochastic parametrization and model uncertainty. ECMWF Tech. Memo. 2009, 598, 44. Available online: https://www.ecmwf.int/sites/default/files/elibrary/2009/11577-stochastic-parametrization-and-model-uncertainty.pdf (accessed on 18 November 2022).
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. 2008, 113, D13. [Google Scholar] [CrossRef]
- Thompson, G.; Eidhammer, T. A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J. Atmos. Sci. 2014, 71, 3636–3658. [Google Scholar] [CrossRef]
- Alessandrini, S.; Vandenberghe, F.; Hacker, J. Definition of typical-day dispersion patterns as a consequence of a hazardous release. Int. J. Environ. Pollut. 2017, 62, 305–318. [Google Scholar] [CrossRef]
- Grell, G.A.; Freitas, S.R. A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmos. Chem. Phys. 2014, 14, 5233–5250. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Tiedtke, M. A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Mon. Wea. Rev. 1989, 117, 1779–1800. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, Y.; Hamilton, K. Improved representation of boundary layer clouds over the southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev. 2011, 139, 3489–3513. [Google Scholar] [CrossRef] [Green Version]
- Niu, Z.W.; DAN, L.; Yang, Z.Z. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. 2011, 116, D12109. [Google Scholar] [CrossRef] [Green Version]
- Tao, W.K.; Simpson, J.; Baker, D.; Braun, S.; Chou, M.D.; Ferrier, B.; Johnson, D.; Khain, A.; Lang, S.; Lynn, B. Microphysics, radiation and surface processes in the Goddard Cumulus Ensemble (GCE) model. Meteor. Atmos. Phys. 2003, 82, 97–137. [Google Scholar] [CrossRef]
- Lang, S.; Tao, W.-K.; Cifelli, R.; Olson, W.; Halverson, J.; Rutledge, S.; Simpson, J. Improving simulations of convective system from TRMM LBA: Easterly and Westerly regimes. J. Atmos. Sci. 2007, 64, 1141–1164. [Google Scholar] [CrossRef] [Green Version]
- Chou, M.-D.; Suarez, M.J. A Solar Radiation Parameterization for Atmospheric Studies; NASA Technical Report NASA/TM-1999-104606; NASA: Washington, DC, USA, 1999; Volume 15, 51p. Available online: https://ntrs.nasa.gov/citations/19990060930 (accessed on 18 November 2022).
- Chou, M.-D.; Suarez, M.J. A Thermal Infrared Radiation Parameterization for Atmospheric Studies; NASA Technical Report NASA/TM-2001-104606; NASA: Washington, DC, USA, 2001; Volume 19, 68p. Available online: https://ntrs.nasa.gov/citations/20010072848 (accessed on 18 November 2022).
- Tegen, I.; Hollrig, P.; Chin, M.; Fung, I.; Jacob, D.; Penner, J. Contribution of different aerosol species to the global aerosol extinction optical thickness: Estimates from model results. J. Geophys. Res. 1997, 102, 23895–23915. [Google Scholar] [CrossRef]
- Ruiz-Arias, J.A.; Dudhia, J.; Gueymard, C.A. A simple parameterization of the short-wave aerosol optical properties for surface direct and diffuse irradiances assessment in a numerical weather model. Geosci. Model Dev. 2014, 7, 1159–1174. [Google Scholar] [CrossRef] [Green Version]
- Sengupta, M.; Xie, Y.; Lopez, A.; Habte, A.; Maclaurin, G.; Shelby, J. The national solar radiation data base (NSRDB). Renew. Sustain. Energy Rev. 2018, 89, 51–60. [Google Scholar] [CrossRef]
- Yang, J.; Sengupta, M.; Jimenez, P.A.; Kim, J.-H.; Jimenez, P.A.; Xie, Y. Evaluating WRF-Solar EPS cloud mask forecast using the NSRDB. Sol. Energy 2022, 243, 348–360. [Google Scholar] [CrossRef]
- Anderson, J.L. A method for producing and evaluating probabilistic forecasts from ensemble model integrations. J. Clim. 1996, 9, 1518–1530. [Google Scholar] [CrossRef]
- Hamill, T.M. Interpretation of rank histograms for verifying ensemble forecasts. Mon. Wea. Rev. 2001, 129, 550–560. [Google Scholar] [CrossRef]
- Peirce, C.S. The numerical measure of the success of predictions. Science 1884, 4, 453–454. [Google Scholar] [CrossRef] [PubMed]
- Mason, I.B. Binary events. In Forecast Verification: A Practitioner’s Guide in Atmospheric Science; Jolliffe, I.T., Stephenson, D.B., Eds.; John and Wiley and Sons: Hoboken, NJ, USA, 2003; pp. 37–76. [Google Scholar]
p | Variable Name | Selected Modules | ω | |||
---|---|---|---|---|---|---|
1 | Albedo | FARMS | 0.1 | 100,000 | 86,400 | 0 |
2 | Aerosol optical depth | FARMS | 0.25 | 100,000 | 3600 | 0 |
3 | Ångström wavelength exponent | FARMS | 0.1 | 100,000 | 3600 | 0 |
4 | Asymmetry factor | FARMS | 0.05 | 100,000 | 3600 | 0 |
5 | Water vapor mixing ratio | FARMS, MYNN, Thompson, Noah, Deng, and CLD3 | 0.05 | 100,000 | 3600 | 1 |
6 | Cloud water mixing ratio | FARMS, MYNN, Thompson, and Deng | 0.1 | 100,000 | 3600 | 1 |
7 | Ice mixing ratio | Thompson | 0.1 | 100,000 | 3600 | 1 |
8 | Snow mixing ratio | FARMS and Thompson | 0.1 | 100,000 | 3600 | 1 |
9 | Ice number concentration | Thompson | 0.05 | 100,000 | 3600 | 1 |
10 | Potential temperature | MYNN, Noah, Deng, and CLD3 | 0.001 | 100,000 | 3600 | 1 |
11 | Turbulent kinetic energy | MYNN | 0.05 | 80,000 | 600 | 1 |
12 | Soil moisture content | Noah | 0.1 | 80,000 | 21,600 | 1 |
13 | Soil temperature | Noah | 0.001 | 80,000 | 21,600 | 1 |
14 | Vertical velocity | Deng | 0.1 | 80,000 | 21,600 | 1 |
Ensemble | Microphysics | Cumulus | Shallow Cumulus | PBL | Aerosol | LSM | Albedo | Radiation |
---|---|---|---|---|---|---|---|---|
1 | Thompson | no | Deng | MYNN | Tegen [51] | Unified Noah | Monthly albedo | RRTMG |
2 | Thompson aerosol awareness | No | Deng | MYNN | Thompson and Eidhammer | Unified Noah | Monthly albedo | RRTMG |
3 | Thompson | GF | MYNN (icloud_bl = 1, ishallow = 0) | MYNN | Tegen [51] | Unified Noah | Monthly albedo | RRTMG |
4 | Thompson | GF | Grell (Icloud_bl = 0, ishallow = 1 Edmf = 0) | MYNN | Tegen [51] | Unified Noah | Monthly albedo | RRTMG |
5 | Thompson | no | Deng | MYNN | Tegen [51] | Noah MP | Table | RRTMG |
6 | Thompson | no | Deng | MYNN | Ruiz-Arias et al. [52] | Unified Noah | Monthly albedo | Goddard |
7 | Goddard | no | Deng | MYNN | Tegen [51] | Unified Noah | Monthly albedo | RRTMG |
8 | Goddard | no | Deng | MYNN | Ruiz-Arias [52] | Unified Noah | Monthly albedo | Goddard |
9 | Thompson | KF | icloud_bl = 0, ishallow = 1 Edmf = 0 | MYNN | Tegen [51] | Unified Noah | Monthly albedo | RRTMG |
10 | Thompson | Modified Tiedtke | icloud_bl = 0, ishallow = 1 Edmf = 0 | MYNN | Tegen [51] | Unified Noah | Monthly albedo | RRTMG |
Forecasting | |||
---|---|---|---|
NSRDB | Scenario | Cloudy | Cloud-free |
Cloudy | CC | CN | |
Cloud-free | NC | NN |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-H.; Jiménez, P.A.; Sengupta, M.; Dudhia, J.; Yang, J.; Alessandrini, S. The Impact of Stochastic Perturbations in Physics Variables for Predicting Surface Solar Irradiance. Atmosphere 2022, 13, 1932. https://doi.org/10.3390/atmos13111932
Kim J-H, Jiménez PA, Sengupta M, Dudhia J, Yang J, Alessandrini S. The Impact of Stochastic Perturbations in Physics Variables for Predicting Surface Solar Irradiance. Atmosphere. 2022; 13(11):1932. https://doi.org/10.3390/atmos13111932
Chicago/Turabian StyleKim, Ju-Hye, Pedro A. Jiménez, Manajit Sengupta, Jimy Dudhia, Jaemo Yang, and Stefano Alessandrini. 2022. "The Impact of Stochastic Perturbations in Physics Variables for Predicting Surface Solar Irradiance" Atmosphere 13, no. 11: 1932. https://doi.org/10.3390/atmos13111932
APA StyleKim, J. -H., Jiménez, P. A., Sengupta, M., Dudhia, J., Yang, J., & Alessandrini, S. (2022). The Impact of Stochastic Perturbations in Physics Variables for Predicting Surface Solar Irradiance. Atmosphere, 13(11), 1932. https://doi.org/10.3390/atmos13111932