Seasonal Variations in Concentrations and Chemical Compositions of TSP near a Bulk Material Storage Site for a Steel Plant
Abstract
:1. Introduction
2. Methodology
2.1. Description of Parameters in the Study Location
2.2. Collection, Weighing and Conditioning of the Samples
2.3. Sample Pretreatment and Chemical Analysis
2.4. Exposure and Risk Assessment
3. Results and Discussion
3.1. TSP Concentrations during Summer and Winter
3.2. Model Predictions of TSP Concentrations
3.3. Relationship between TSP Concentrations and Those of Other Co-Pollutants
3.4. Chemical Compositions of TSP
3.5. Health Risk Assessment of the Potentially Toxic Elements in TSP
Metal Elements | CSF (mg kg-day−1)−1 | RfD (mg kg-day−1)−1 | Incremental Lifetime Cancer Risk (ILCR) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Summer | Winter | |||||||||||
Site 1 | Site 2 | Site 3 | Site 4 | Average for Summer | Site 1 | Site 2 | Site 3 | Site 4 | Average for Winter | |||
Cr | 5.10 × 102 | 3.00 × 10−5 | 6.01 × 10−4 | 1.68 × 10−4 | 1.91 × 10−4 | 1.79 × 10−4 | 2.85 × 10−4 | 6.93 × 10−4 | 6.51 × 10−4 | 7.89 × 10−4 | 7.09 × 10−4 | 7.11 × 10−4 |
Co | 2.70 × 101 | 5.70 × 10−6 | 3.61 × 10−7 | 5.02 × 10−7 | 4.55 × 10−7 | 3.72 × 10−7 | 4.22 × 10−7 | 4.34 × 10−6 | 3.97 × 10−6 | 3.89 × 10−6 | 3.92 × 10−6 | 4.03 × 10−6 |
Ni | 6.60 × 10−3 | 9.80 × 10−2 | 6.14 × 10−9 | 3.37 × 10−9 | 2.72 × 10−9 | 2.39 × 10−9 | 3.65 × 10−9 | 1.34 × 10−8 | 1.87 × 10−8 | 1.45 × 10−8 | 9.22 × 10−9 | 1.39 × 10−8 |
As | 1.20 × 101 | 3.30 × 10−2 | 1.74 × 10−6 | 7.62 × 10−7 | 4.81 × 10−7 | 4.67 × 10−7 | 8.64 × 10−7 | 3.89 × 10−6 | 3.98 × 10−6 | 3.78 × 10−6 | 4.25 × 10−6 | 3.98 × 10−6 |
Pb | 4.20 × 10−2 | 5.60 × 10−2 | 1.22 × 10−7 | 2.09 × 10−8 | 1.92 × 10−8 | 2.22 × 10−8 | 4.60 × 10−8 | 1.81 × 10−7 | 1.64 × 10−7 | 1.98 × 10−7 | 2.67 × 10−7 | 2.03 × 10−7 |
Mn | - | 1.43 × 10−5 | ||||||||||
Cu | - | 1.95 × 10−7 | ||||||||||
Zn | - | 2.40 × 10−8 |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, A.K.; Nag, S.; Mukhopadhyay, U.K. Measurements of Inhalable Particles < 10 μm (PM10) and Total Suspended Particulates (TSP) Concentrations along the North–South Corridor, in Kolkata, India. J. Environ. Sci. Health Part A 2006, 41, 431–445. [Google Scholar] [CrossRef]
- Duvall, R.; Majestic, B.; Shafer, M.; Chuang, P.; Simoneit, B.; Schauer, J. The water-soluble fraction of carbon, sulfur, and crustal elements in Asian aerosols and Asian soils. Atmos. Environ. 2008, 42, 5872–5884. [Google Scholar] [CrossRef]
- Petavratzi, E.; Kingman, S.; Lowndes, I. Particulates from mining operations: A review of sources, effects and regulations. Miner. Eng. 2005, 18, 1183–1199. [Google Scholar] [CrossRef]
- Watson, J.G.; Chow, J.C.; Pace, T.G. Fugitive dust emissions. Crops 2000, 3, 7. [Google Scholar]
- Wang, Z.; Chen, J.; Huang, L.; Wang, Y.; Cai, X.; Qiao, X.; Dong, Y. Integrated fuzzy concentration addition–independent action (IFCA–IA) model outperforms two-stage prediction (TSP) for predicting mixture toxicity. Chemosphere 2009, 74, 735–740. [Google Scholar] [CrossRef]
- Mutuku, J.K.; Hou, W.-C.; Chen, W.-H. An overview of experiments and numerical simulations on airflow and aerosols deposition in human airways and the role of bioaerosol motion in COVID-19 transmission. Aerosol Air Qual. Res. 2020, 20, 1172–1196. [Google Scholar] [CrossRef]
- Begam, G.R.; Vachaspati, C.V.; Ahammed, Y.N.; Kumar, K.R.; Reddy, R.; Sharma, S.; Saxena, M.; Mandal, T. Seasonal characteristics of water-soluble inorganic ions and carbonaceous aerosols in total suspended particulate matter at a rural semi-arid site, Kadapa (India). Environ. Sci. Pollut. Res. 2017, 24, 1719–1734. [Google Scholar] [CrossRef]
- Rogers, J.F.; Thompson, S.J.; Addy, C.L.; McKeown, R.E.; Cowen, D.J.; Decoufle, P. Association of very low birth weight with exposures to environmental sulfur dioxide and total suspended particulates. Am. J. Epidemiol. 2000, 151, 602–613. [Google Scholar] [CrossRef]
- Chen, E.K.-C.; Zmirou-Navier, D.; Padilla, C.; Deguen, S. Effects of air pollution on the risk of congenital anomalies: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2014, 11, 7642–7668. [Google Scholar] [CrossRef] [Green Version]
- Lewtas, J. Air pollution combustion emissions: Characterization of causative agents and mechanisms associated with cancer, reproductive, and cardiovascular effects. Mutat. Res. Rev. Mutat. Res. 2007, 636, 95–133. [Google Scholar] [CrossRef]
- Radulescu, C.; Stihi, C.; Ion, R.-M.; Dulama, I.-D.; Stanescu, S.-G.; Stirbescu, R.M.; Teodorescu, S.; Gurgu, I.-V.; Let, D.-D.; Olteanu, L. Seasonal Variability in the Composition of Particulate Matter and the Microclimate in Cultural Heritage Areas. Atmosphere 2019, 10, 595. [Google Scholar] [CrossRef]
- Sezer Turalıoğlu, F.; Nuhoğlu, A.; Bayraktar, H. Impacts of some meteorological parameters on SO2 and TSP concentrations in Erzurum, Turkey. Chemosphere 2005, 59, 1633–1642. [Google Scholar] [CrossRef]
- Marenco, L.; Cantillo, V. A framework to evaluate particulate matter emissions in bulk material ports: Case study of Colombian coal terminals. Marit. Policy Manag. 2015, 42, 335–361. [Google Scholar] [CrossRef]
- Mutuku, K.J.; Lee, Y.-Y.; Chang-Chien, G.-P.; Lin, S.-L.; Chen, W.-H.; Ho, W.-C. Chemical fingerprints for PM2. 5 in the ambient air near a raw material storage site for iron ore, coal, limestone, and sinter. Aerosol Air Qual. Res. 2021, 21, 200624. [Google Scholar] [CrossRef]
- Lee, Y.-Y.; Yuan, C.-S.; Yen, P.-H.; Mutuku, J.K.; Huang, C.-E.; Wu, C.-C.; Huang, P.-J. Suppression Efficiency for Dust from an Iron Ore Pile Using a Conventional Sprinkler and a Water Mist Generator. Aerosol Air Qual. Res. 2022, 22, 210320. [Google Scholar] [CrossRef]
- US EPA. Integrated Risk Information System; Environmental Protection Agency Region: Washington, DC, USA, 2011; p. 20460. Available online: https://iris.epa.gov/AtoZ (accessed on 29 September 2022).
- Chakraborty, N.; Mukherjee, I.; Santra, A.; Chowdhury, S.; Chakraborty, S.; Bhattacharya, S.; Mitra, A.; Sharma, C. Measurement of CO2, CO, SO2, and NO emissions from coal-based thermal power plants in India. Atmos. Environ. 2008, 42, 1073–1082. [Google Scholar] [CrossRef]
- Josipovic, M.; Annegarn, H.J.; Kneen, M.A.; Pienaar, J.J.; Piketh, S.J. Concentrations, distributions and critical level exceedance assessment of SO2, NO2 and O3 in South Africa. Environ. Monit. Assess. 2010, 171, 181–196. [Google Scholar] [CrossRef]
- Cyrys, J.; Hochadel, M.; Gehring, U.; Hoek, G.; Diegmann, V.; Brunekreef, B.; Heinrich, J. GIS-based estimation of exposure to particulate matter and NO2 in an urban area: Stochastic versus dispersion modeling. Environ. Health Perspect. 2005, 113, 987–992. [Google Scholar] [CrossRef] [Green Version]
- Du, C.; Liu, S.; Yu, X.; Li, X.; Chen, C.; Peng, Y.; Dong, Y.; Dong, Z.; Wang, F. Urban boundary layer height characteristics and relationship with particulate matter mass concentrations in Xi’an, central China. Aerosol Air Qual. Res. 2013, 13, 1598–1607. [Google Scholar] [CrossRef]
- Gupta, P.; Christopher, S.A. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach. J. Geophys. Res. Atmos. 2009, 114. [Google Scholar] [CrossRef] [Green Version]
- Chai, J.; Miller, D.J.; Scheuer, E.; Dibb, J.; Selimovic, V.; Yokelson, R.; Zarzana, K.J.; Brown, S.S.; Koss, A.R.; Warneke, C. Isotopic characterization of nitrogen oxides (NO x), nitrous acid (HONO), and nitrate (pNO 3−) from laboratory biomass burning during FIREX. Atmos. Meas. Tech. 2019, 12, 6303–6317. [Google Scholar] [CrossRef]
- Hao, J.; Wu, Y.; Fu, L.; He, D.; He, K. Source contributions to ambient concentrations of CO and NOx in the urban area of Beijing. J. Environ. Sci. Health Part A 2001, 36, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Zheng, J.; Ye, S.; Shen, X.; Yuan, Z.; Yin, S. Emission trends and source characteristics of SO2, NOx, PM10 and VOCs in the Pearl River Delta region from 2000 to 2009. Atmos. Environ. 2013, 76, 11–20. [Google Scholar] [CrossRef]
- Hueglin, C.; Gehrig, R.; Baltensperger, U.; Gysel, M.; Monn, C.; Vonmont, H. Chemical characterization of PM2.5, PM10 and coarse particles at urban, near-city and rural sites in Switzerland. Atmos. Environ. 2005, 39, 637–651. [Google Scholar] [CrossRef]
- Rajšić, S.; Mijić, Z.; Tasić, M.; Radenković, M.; Joksić, J. Evaluation of the levels and sources of trace elements in urban particulate matter. Environ. Chem. Lett. 2008, 6, 95–100. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Y.; Ding, Z.; Wang, T.; Lian, H.; Sun, Y.; Wu, J. Bioaccessibility and health risk of arsenic and heavy metals (Cd, Co, Cr, Cu, Ni, Pb, Zn and Mn) in TSP and PM2.5 in Nanjing, China. Atmos. Environ. 2012, 57, 146–152. [Google Scholar] [CrossRef]
- Kirchsteiger, B.; Kubik, F.; Sturmlechner, R.; Stressler, H.; Schwabl, M.; Kistler, M.; Kasper-Giebl, A. Real-life emissions from residential wood combustion in Austria: From TSP emissions to PAH emission profiles, diagnostic ratios and toxic risk assessment. Atmos. Pollut. Res. 2021, 12, 101127. [Google Scholar] [CrossRef]
- Jones, A.M.; Harrison, R.M. Interpretation of particulate elemental and organic carbon concentrations at rural, urban and kerbside sites. Atmos. Environ. 2005, 39, 7114–7126. [Google Scholar] [CrossRef]
Sampling Point | Median TSP Concentration (μg m−3) | |
---|---|---|
Summer | Winter | |
Stee company’s administration building | 47 | 111 |
Elementary school A | 35 | 120 |
Elementary school B | 37 | 134 |
Public library | 25 | 114 |
Mass Concentrations of Chemical Groups (μg m−3) | ||||||
---|---|---|---|---|---|---|
Metal Elements | Water Soluble Ions | Total Carbon Content | ||||
Summer | Winter | Summer | Winter | Summer | Winter | |
Steel company’s Admin. building | 6.66 | 10.36 | 29.80 | 41.40 | 5.85 | 19.28 |
Elementary school A | 3.55 | 11.31 | 22.21 | 40.43 | 6.22 | 16.54 |
Elementary school B | 6.01 | 12.67 | 25.53 | 49.07 | 6.17 | 16.82 |
Public library | 3.10 | 8.86 | 15.60 | 39.40 | 6.89 | 16.99 |
Mean | 4.83 | 10.80 | 23.28 | 42.58 | 6.28 | 17.41 |
Std dev. | 1.77 | 0.80 | 5.99 | 4.41 | 0.44 | 1.26 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, Y.-Y.; Lin, S.-L.; Huang, B.-W.; Mutuku, J.K.; Chang-Chien, G.-P. Seasonal Variations in Concentrations and Chemical Compositions of TSP near a Bulk Material Storage Site for a Steel Plant. Atmosphere 2022, 13, 1937. https://doi.org/10.3390/atmos13111937
Lee Y-Y, Lin S-L, Huang B-W, Mutuku JK, Chang-Chien G-P. Seasonal Variations in Concentrations and Chemical Compositions of TSP near a Bulk Material Storage Site for a Steel Plant. Atmosphere. 2022; 13(11):1937. https://doi.org/10.3390/atmos13111937
Chicago/Turabian StyleLee, Yen-Yi, Sheng-Lun Lin, Bo-Wun Huang, Justus Kavita Mutuku, and Guo-Ping Chang-Chien. 2022. "Seasonal Variations in Concentrations and Chemical Compositions of TSP near a Bulk Material Storage Site for a Steel Plant" Atmosphere 13, no. 11: 1937. https://doi.org/10.3390/atmos13111937
APA StyleLee, Y. -Y., Lin, S. -L., Huang, B. -W., Mutuku, J. K., & Chang-Chien, G. -P. (2022). Seasonal Variations in Concentrations and Chemical Compositions of TSP near a Bulk Material Storage Site for a Steel Plant. Atmosphere, 13(11), 1937. https://doi.org/10.3390/atmos13111937