A Study of Land Ecological Environment Evaluation Based on an Ideal Point Model
Abstract
:1. Introduction
2. Research Area Overview and Data Preprocessing
2.1. Overview of the Study Area
2.2. Data Preprocessing
3. Methods
3.1. Selection of Evaluation Indicators
3.2. Subjective and Objective Weighting
3.3. Classification of Land Ecological Quality Using Ideal Point Method
3.4. Hot Spot Analysis Model
3.5. Analyses of Main Control Factors
4. Results and Discussion
4.1. Classification of Ideal Points for Land Ecological Quality
4.2. Spatial Differentiation Analysis of Land Ecological Quality Based on Hot Spot Model
4.3. Analyses of Main Control Factors
4.4. Comprehensive Evaluation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pieri, C.; Dumanski, J.; Hamblin, A.; Young, A.; Undp, U. Land Quality Indicators. World Bank Discuss. Pap. 1995, 81, 81. [Google Scholar]
- Messing, I.; Fagerström, M.-H.H.; Chen, L.; Fu, B. Criteria for land suitability evaluation in a small catchment on the Loess Plateau in China. Catena 2003, 51, 215–234. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Su, W.C.; Zhang, F.T. Evaluation of Land Ecological Security in the Three Gorges Reservoir Ecological Economic Zone based on PSR Model. China Environ. Sci. 2011, 31, 1039–1044. [Google Scholar]
- Paracchini, M.L.; Pacini, C.; Jones, M.L.M.; Pérez-Soba, M. Aggregation framework to link indicators associated with multifunctional land use to the stakehode: Evaluation of options. Ecol. Indic. 2011, 1, 71–80. [Google Scholar] [CrossRef]
- Gong, F.; Chen, B. Research on comprehensive evaluation of grassland ecological compensation based on DPSIR model——Taking Inner Mongolia as an example. J. Inn. Mong. Agric. Univ. (Soc. Sci. Ed.) 2019, 21, 1–6. [Google Scholar]
- Zou, Y.; Zhu, D.; Chen, W.; Sun, Z. Evaluation of environmental efficiency and ecological inefficiency of various regions in China based on DEA model. J. Hubei Univ. (Nat. Sci. Ed.) 2020, 42, 12–19+26. [Google Scholar]
- Wang, Y.; Wei, J.; Sun, Q.; Wang, F. Evaluation and prediction of ecological security based on ARIMA-ANN model—Taking Hexi Corridor urban agglomeration as an example. J. Ecol. 2020, 39, 326–336. [Google Scholar]
- Feng, W.B.; Li, S.F. Research on evaluation of land ecological security in Jiangsu Province. Bull. Soil Water Conserv. 2013, 33, 285–290. [Google Scholar]
- Li, L.; Hou, S.T.; Zhao, Y.; Zheng, X. Evaluation and prediction of land ecological security in Henan Province based on P-S-R Model. Res. Soil Water Conserv. 2014, 21, 188–192. [Google Scholar]
- Li, Y.Y.; Yang, C.X.; Xin, G.X.; Liu, S.; Zhao, T. Research on the dynamic changes of land ecological security. J. Southwest China Norm. Univ. (Nat. Sci. Ed.) 2014, 39, 189–195. [Google Scholar]
- Lu, L.F.; Yan, L.J. Evaluation of land ecological security in county areas: Taking Danling County, Sichuan Province as an Example. J. Ecol. Rural. Environ. 2013, 29, 295–300. [Google Scholar]
- Dai, L.; Yao, X.C.; Zhou, S.L.; Li, L. Evaluation of the ecological status of land in Jintan City, an economically developed area of the Yangtze River Delta. Trans. Chin. Soc. Agric. Eng. 2013, 29, 249–257. [Google Scholar]
- Chen, Z.; Xia, X.Q.; Chen, J.P. Remote Sensing Evaluation Model and Main controlling factors of land Ecological quality: A case study of Guang’ an City. Remote Sens. Land Resour. 2021, 33, 201–208. [Google Scholar]
- Yu, Y.; Zhou, D.M.; Wang, H.; Sun, N. Analysis of land resource evaluation method and determination of evaluation factor weight. Chin. J. Eco-Agric. 2006, 213–215. [Google Scholar]
- Guo, Q.; Wang, Q.; Lan, H. Preliminary research on ecosystem entropy. Liaoning Meteorol. 1992, 21, 9–10. [Google Scholar]
- Wang, Q.Y.; Pan, X.H. Application of entropy weight method in emergency rescue assessment of major hazard sources. J. Nanjing Univ. Technol. (Nat. Sci. Ed.) 2011, 33, 87–92. [Google Scholar]
- Wang, S.H.; Zhu, B.Q.; Zhang, Z. Rock mass disjointed plane classification method based on improved ideal point model. J. Northeast. Univ. Nat. Sci. Ed. 2021, 42, 117. [Google Scholar]
- Chen, Z.; Li, S.; Chen, J. Remote Sensing Spatial Differentiation and Main controlling Factors of land Ecological quality: A case study of Guang’ an City. Bull. Surv. Mapp. 2020, 6, 94. [Google Scholar]
- Huang, H.; Luo, W.; Wu, C.; Li, D. Evaluation of land ecological security based on matter element analysis. Trans. Chin. Soc. Agric. Eng. 2010, 26, 316–322. [Google Scholar]
Years | Proportion of Land-Use Types (%) | ||||
---|---|---|---|---|---|
Woodland | Grassland | Water | Wasteland | Construction Land | |
2000 | 79.07 | 6.68 | 2.55 | 9.75 | 1.95 |
2005 | 82.99 | 0.26 | 3.56 | 11.43 | 1.76 |
2010 | 79.33 | 8.65 | 2.75 | 6.42 | 2.85 |
2015 | 85.79 | 4.44 | 4.39 | 1.84 | 3.54 |
Criterion Layer | Evaluation Index |
---|---|
Ecological background | 1. Average annual precipitation; 2. annual average temperature; 3. vegetation index; 4. total primary productivity (GPP); 5. topography |
Ecological structure | 6. Proportion of forest land; 7. proportion of grassland; 8. proportion of water body; 9. proportion of bare land; 10. proportion of construction land |
Ecological benefits | 11. The value of ecological services |
Ecological stress | 12. Gross domestic product (GDP); 13. population density; 14. night lights |
Ecological Grade | Proportion of Evaluation Units (%) | |||
---|---|---|---|---|
2000 | 2005 | 2010 | 2015 | |
Level 1 | 7.07 | 1.25 | 2.76 | 2.61 |
Level 2 | 33.79 | 56.52 | 28.60 | 17.04 |
Level 3 | 54.84 | 34.74 | 64.59 | 72.41 |
Level 4 | 3.42 | 6.61 | 3.22 | 7.13 |
Level 5 | 0.81 | 0.83 | 0.76 | 0.71 |
Master Factor | Order of Components | FAC1_1 | FAC2_1 | FAC3_1 |
---|---|---|---|---|
Terrain (−) | ⃞ | −0.308 07 | −0.026 89 | −0.342 47 |
Population (−) | −0.520 77 | −0.338 18 | −0.716 06 | |
GDP (−) | −0.424 16 | −0.243 47 | −0.569 85 | |
Night lights (−) | −0.329 16 | −0.154 92 | −0.482 63 | |
Air temperature (+) | 0.595 20 | 0.562 66 | 0.544 18 | |
NDVI (+) | 0.433 00 | 0.306 73 | −0.123 04 | |
Precipitation (+) | 0.482 34 | 0.426 82 | 0.288 68 | |
GPP (+) | −0.844 80 | −0.569 17 | −1.084 96 | |
Proportion of woodland (+) | 1 | 2.955 60 | −0.599 57 | −0.172 50 |
Proportion of grassland (+) | −0.600 23 | 0.175 69 | −0.762 56 | |
Proportion of water (+) | 3 | −0.695 58 | −1.952 64 | 2.563 03 |
Proportion of wasteland (+) | 2 | −0.399 69 | 2.579 52 | 1.348 87 |
Proportion of construction land (−) | ⃞ | −0.343 67 | −0.166 58 | −0.490 69 |
Master Factor | Order of Components | FAC1_1 | FAC2_1 | FAC3_1 |
---|---|---|---|---|
Terrain (−) | 3 | 0.336 04 | −0.333 25 | 1.884 00 |
Population (−) | −0.336 63 | −0.240 46 | 0.412 78 | |
GDP (−) | 0.215 26 | −0.319 19 | 1.442 95 | |
Night lights (−) | −0.071 25 | −0.289 97 | 0.836 87 | |
Air temperature (+) | 1 | 2.581 45 | −0.147 24 | −0.860 66 |
NDVI (+) | −0.394 08 | −0.349 28 | 0.012 99 | |
Precipitation (+) | 1.390 53 | −0.139 22 | −0.949 99 | |
GPP (+) | −0.883 23 | −0.240 13 | −1.551 93 | |
Proportion of woodland (+) | −0.211 71 | 0.464 05 | 0.333 61 | |
Proportion of grassland (+) | −0.862 01 | −0.087 26 | −0.959 10 | |
Proportion of water (+) | −0.892 80 | −0.247 32 | −0.530 70 | |
Proportion of wasteland (+) | 2 | −0.100 58 | 3.297 76 | 0.220 05 |
Proportion of construction land (−) | ⃞ | −0.770 99 | −0.263 21 | −0.290 85 |
Master Factor | Order of Components | FAC1_1 | FAC2_1 | FAC3_1 |
---|---|---|---|---|
Terrain (−) | −0.315 20 | −0.063 57 | −0.386 22 | |
Population (−) | −0.521 95 | −0.052 42 | −0.896 30 | |
GDP (−) | −0.433 11 | −0.07 549 | −0.723 02 | |
Night lights (−) | −0.295 67 | −0.061 55 | −0.671 06 | |
Air temperature (+) | 0.585 50 | −0.244 60 | 0.996 77 | |
NDVI (+) | 0.602 72 | −0.446 48 | 0.634 94 | |
Precipitation (+) | 0.491 46 | −0.276 41 | 0.736 05 | |
GPP (+) | −0.849 94 | 0.093 58 | −1.650 53 | |
Proportion of woodland (+) | 1 | 2.906 75 | 0.445 09 | −0.69 235 |
Proportion of grassland (+) | −0.503 90 | −1.160 84 | 0.437 99 | |
Proportion of water (+) | 2 | −0.682 32 | 2.986 16 | 1.131 55 |
Proportion of wasteland (+) | 3 | −0.614 83 | −1.083 00 | 1.739 95 |
Proportion of construction land (−) | ⃞ | −0.369 50 | −0.060 47 | −0.657 77 |
Master Factor | Order of Components | FAC1_1 | FAC2_1 | FAC3_1 |
---|---|---|---|---|
Terrain (−) | −0.302 46 | −0.247 35 | 0.037 47 | |
Population (−) | −0.443 68 | −0.416 52 | 0.302 54 | |
GDP (−) | −0.378 95 | −0.363 77 | 0.244 99 | |
Night lights (−) | −0.268 11 | −0.317 80 | 0.584 07 | |
Air temperature (+) | 0.532 44 | 0.156 52 | −1.461 93 | |
NDVI (+) | 0.513 35 | −0.067 13 | −0.423 64 | |
Precipitation (+) | 0.493 81 | 0.029 23 | −1.366 81 | |
GPP (+) | 3 | −0.804 23 | −0.539 67 | 1.890 78 |
Proportion of woodland (+) | 1 | 2.937 22 | −0.105 74 | 0.921 57 |
Proportion of grassland (+) | −0.719 98 | −0.533 02 | 0.016 33 | |
Proportion of water (+) | 2 | −0.477 37 | 3.247 15 | 0.346 06 |
Proportion of wasteland (+) | −0.764 16 | −0.513 73 | −1.589 99 | |
Proportion of construction land (−) | ⃞ | −0.317 88 | −0.328 19 | 0.498 56 |
Years | Master Factor 1 | Master Factor 2 | Master Factor 3 |
---|---|---|---|
2000 | Proportion of woodland | Proportion of wasteland | Proportion of water |
2005 | Air temperature | Proportion of wasteland | terrain |
2010 | Proportion of woodland | Proportion of water | Proportion of wasteland |
2015 | Proportion of woodland | Proportion of water | GPP |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Shi, L. A Study of Land Ecological Environment Evaluation Based on an Ideal Point Model. Atmosphere 2022, 13, 1955. https://doi.org/10.3390/atmos13121955
Chen Z, Shi L. A Study of Land Ecological Environment Evaluation Based on an Ideal Point Model. Atmosphere. 2022; 13(12):1955. https://doi.org/10.3390/atmos13121955
Chicago/Turabian StyleChen, Zhen, and Lianwu Shi. 2022. "A Study of Land Ecological Environment Evaluation Based on an Ideal Point Model" Atmosphere 13, no. 12: 1955. https://doi.org/10.3390/atmos13121955
APA StyleChen, Z., & Shi, L. (2022). A Study of Land Ecological Environment Evaluation Based on an Ideal Point Model. Atmosphere, 13(12), 1955. https://doi.org/10.3390/atmos13121955