Emulation of a Chemical Transport Model to Assess Air Quality under Future Emission Scenarios for the Southwest of Western Australia
Abstract
:1. Introduction
2. Materials and Methods
2.1. The CCAM-CTM
2.2. Case Study Region
2.3. Emissions Data
2.4. Exposure Assessment
2.5. Emulation
3. Results
3.1. Assessment of the Emulator
3.2. Associations between Parameters and Output
3.3. Sensitivity Analyses
3.4. Scenario Analyses
- S1.
- All on-road diesel vehicles switched to electric under BAU electricity generation
- S2.
- All on-road petrol vehicles to electric under BAU electricity generation
- S3.
- All on-road vehicles switched to electric under BAU electricity generation
- S4.
- All on-road vehicles switched to electric combined with 100% renewable electricity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoek, G. Methods for Assessing Long-Term Exposures to Outdoor Air Pollutants. Curr. Environ. Health Rep. 2017, 4, 450–462. [Google Scholar] [CrossRef]
- Carruthers, D.; Holroyd, R.; Hunt, J.; Weng, W.; Robins, A.; Apsley, D.; Thompson, D.; Smith, F. UK-ADMS: A new approach to modelling dispersion in the earth’s atmospheric boundary layer. J. Wind. Eng. Ind. Aerodyn. 1994, 52, 139–153. [Google Scholar] [CrossRef]
- Appel, K.W.; Napelenok, S.L.; Foley, K.M.; Pye, H.O.T.; Hogrefe, C.; Luecken, D.J.; Bash, J.O.; Roselle, S.J.; Pleim, J.E.; Foroutan, H.; et al. Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1. Geosci. Model Dev. 2017, 10, 1703. [Google Scholar] [CrossRef] [Green Version]
- Morris, R.E.; Yarwood, G.; Wagner, A. Recent Advances in CAMx Air Quality Modelling. In Air Pollution Modelling and Simulation; Sportisse, B., Ed.; Springer: Berlin/Heidelberg, Germany, 2002; pp. 79–88. [Google Scholar] [CrossRef]
- Matthias, V.; Arndt, J.A.; Aulinger, A.; Bieser, J.; Van Der Gon, H.D.; Kranenburg, R.; Kuenen, J.; Neumann, D.; Pouliot, G.; Quante, M. Modeling emissions for three-dimensional atmospheric chemistry transport models. J. Air Waste Manag. Assoc. 2018, 68, 763–800. [Google Scholar] [CrossRef]
- Mann, M.; Bertok, I.; Borken-Kleefeld, J.; Cofala, J.; Heyes, C.; Höglund-Isaksson, L.; Klimont, Z.; Nguyen, B.; Posch, M.; Rafaj, P.; et al. Cost-effective control of air quality and greenhouse gases in Europe: Modeling and policy applications. Environ. Model. Softw. 2011, 26, 1489–1501. [Google Scholar] [CrossRef]
- Askariyeh, M.H.; Khreis, H.; Vallamsundar, S. Air pollution monitoring and modeling. Traffic-Relat. Air Pollut. 2020, 5, 111–135. [Google Scholar] [CrossRef]
- Henneman, L.R.F.; Dedoussi, I.C.; Casey, J.A.; Choirat, C.; Barrett, S.R.H.; Zigler, C.M. Comparisons of simple and complex methods for quantifying exposure to individual point source air pollution emissions. J. Expo. Sci. Environ. Epidemiol. 2020, 31, 654–663. [Google Scholar] [CrossRef]
- Baker, K.R.; Amend, M.; Penn, S.; Bankert, J.; Simon, H.; Chan, E.; Fann, N.; Zawacki, M.; Davidson, K.; Roman, H. A database for evaluating the InMAP, APEEP, and EASIUR reduced complexity air-quality modeling tools. Data Brief 2019, 28, 104886. [Google Scholar] [CrossRef]
- Van Dingenen, R.; Dentener, F.; Crippa, M.; Leitao, J.; Marmer, E.; Rao, S.; Solazzo, E.; Valentini, L. TM5-FASST: A global atmospheric source-receptor model for rapid impact analysis of emission changes on air quality and short-lived climate pollutants. Atmos. Chem. Phys. 2018, 18, 16173–16211. [Google Scholar] [CrossRef]
- Napelenok, S.; Cohan, D.; Odman, M.; Tonse, S. Extension and evaluation of sensitivity analysis capabilities in a photochemical model. Environ. Model. Softw. 2008, 23, 994–999. [Google Scholar] [CrossRef]
- Daniel, C.S.; Napelenok, S.L. Air Quality Response Modeling for Decision Support. Atmosphere 2011, 2, 407–425. [Google Scholar]
- Simon, H.; Valin, L.C.; Baker, K.R.; Henderson, B.H.; Crawford, J.H.; Pusede, S.E.; Kelly, J.T.; Foley, K.M.; Chris Owen, R.; Cohen, R.C.; et al. Characterizing CO and NOy Sources and Relative Ambient Ratios in the Baltimore Area Using Ambient Measurements and Source Attribution Modeling. J. Geophys. Res. Atmos. 2018, 123, 3304–3320. [Google Scholar] [CrossRef]
- O’Hagan, A. Bayesian analysis of computer code outputs: A tutorial. Reliab. Eng. Syst. Saf. 2006, 91, 1290–1300. [Google Scholar] [CrossRef]
- Johnson, J.S.; Cui, Z.; Lee, L.A.; Gosling, J.P.; Blyth, A.M.; Carslaw, K.S. Evaluating uncertainty in convective cloud microphysics using statistical emulation. J. Adv. Model. Earth Syst. 2015, 7, 162–187. [Google Scholar] [CrossRef]
- Lee, L.A.; Carslaw, K.S.; Pringle, K.J.; Mann, G.W.; Spracklen, D.V. Emulation of a complex global aerosol model to quantify sensitivity to uncertain parameters. Atmos. Chem. Phys. 2011, 11, 12253–12273. [Google Scholar] [CrossRef] [Green Version]
- Conibear, L.; Reddington, C.L.; Silver, B.J.; Chen, Y.; Knote, C.; Arnold, S.R.; Spracklen, D.V. Sensitivity of Air Pollution Exposure and Disease Burden to Emission Changes in China Using Machine Learning Emulation. GeoHealth 2022, 6, e2021GH000570. [Google Scholar] [CrossRef]
- Conibear, L.; Reddington, C.L.; Silver, B.J.; Chen, Y.; Knote, C.; Arnold, S.R.; Spracklen, D.V. Statistical Emulation of Winter Ambient Fine Particulate Matter Concentrations from Emission Changes in China. GeoHealth 2021, 5, e2021GH000391. [Google Scholar] [CrossRef]
- Conibear, L.; Reddington, C.L.; Silver, B.J.; Arnold, S.R.; Turnock, S.T.; Klimont, Z.; Spracklen, D.V. The contribution of emission sources to the future air pollution disease burden in China. Environ. Res. Lett. 2022, 17, 064027. [Google Scholar] [CrossRef]
- Mallet, V.; Tilloy, A.; Poulet, D.; Girard, S.; Brocheton, F. Meta-modeling of ADMS-Urban by dimension reduction and emulation. Atmos. Environ. 2018, 184, 37–46. [Google Scholar] [CrossRef]
- Broome, R.A.; Powell, J.; Cope, M.E.; Morgan, G. The mortality effect of PM2.5 sources in the Greater Metropolitan Region of Sydney, Australia. Environ. Int. 2020, 137. [Google Scholar] [CrossRef]
- Training Materials and Best Practices for Chemical Weather/Air Quality Forecasting; WMO: Geneva, Switzerland, 2020.
- Cope, M.; Keywood, M.D.; Emmerson, K.; Galbally, I.E.; Boast, K.; Chambers, S.D.; Cheng, M.; Crumeyrolle, S.; Dunne, E.; Fedele, R. Sydney Particle Study-Stage-II, Study Undertaken by the Centre for Australian Weather and Climate Research (CAWCR) on behalf of the New South Wales Office of Environment and Heritage. 2014. Available online: https://www.environment.nsw.gov.au/-/media/OEH/Corporate-Site/Documents/Air/sydney-particle-study-2010-13.pdf#page=3&zoom=auto,-19,367 (accessed on 13 November 2022).
- Mcgregor, J.L.; Dix, M.R. The CSIRO Conformal-Cubic Atmospheric GCM. In Proceedings of the IUTAM Symposium on Advances in Mathematical Modelling of Atmosphere and Ocean Dynamics, Limerick, Ireland, 2–7 July 2000; Springer: Dordrecht, The Netherlands, 2001; pp. 197–202. [Google Scholar]
- Mann, G.W.; Carslaw, K.S.; Spracklen, D.V.; Ridley, D.A.; Manktelow, P.T.; Chipperfield, M.P.; Pickering, S.J.; Johnson, C.E. Description and evaluation of GLOMAP-mode: A modal global aerosol microphysics model for the UKCA composition-climate model. Geosci. Model Dev. 2010, 3, 519–551. [Google Scholar] [CrossRef] [Green Version]
- Donahue, N.M.; Robinson, A.L.; Stanier, C.O.; Pandis, S.N. Coupled partitioning, dilution, and chemical aging of semivolatile organics. Environ. Sci. Technol. 2006, 40, 2635–2643. [Google Scholar] [CrossRef] [PubMed]
- Nenes, A.; Pandis, S.; Pilinis, C. ISORROPIA: A New Thermodynamic Equilibrium Model for Multiphase Multicomponent Inorganic Aerosols. Aquat. Geochem. 1998, 4, 123–152. [Google Scholar] [CrossRef]
- Meyer, C.P.; Luhar, A.K.; Mitchell, R.M. Biomass burning emissions over northern Australia constrained by aerosol measurements: I—Modelling the distribution of hourly emissions. Atmos. Environ. 2008, 42, 1629–1646. [Google Scholar] [CrossRef]
- Gong, S.L. A parameterization of sea-salt aerosol source function for sub- and super-micron particles. Glob. Biogeochem. Cycles 2003, 17, 1097. [Google Scholar] [CrossRef]
- Lu, H.; Shao, Y. A new model for dust emission by saltation bombardment. J. Geophys. Res. Atmos. 1999, 104, 16827–16842. [Google Scholar] [CrossRef] [Green Version]
- Cope, M.E.; Hess, G.D.; Lee, S.; Tory, K.; Azzi, M.; Carras, J.; Lilley, W.; Manins, P.C.; Nelson, P.; Ng, L.; et al. The Australian Air Quality Forecasting System. Part I: Project Description and Early Outcomes. J. Appl. Meteorol. 2004, 43, 649–662. [Google Scholar] [CrossRef]
- Commonwealth Scientific and Industrial Research Organisation. National AQFx Prototype System. 2022. Available online: https://research.csiro.au/aqfx/ (accessed on 12 November 2022).
- Horsley, J.A.; Broome, R.A.; Johnston, F.H.; Cope, M.; Morgan, G.G. Health burden associated with fire smoke in Sydney, 2001–2013. Med. J. Aust. 2018, 208, 309–310. [Google Scholar] [CrossRef]
- Broome, R.A.; Fann, N.; Cristina, T.J.N.; Fulcher, C.; Duc, H.; Morgan, G.G. The health benefits of reducing air pollution in Sydney, Australia. Environ. Res. 2015, 143, 19–25. [Google Scholar] [CrossRef]
- Australian Bureau of Statistics. Location: Australian Census. 2021. Available online: https://www.abs.gov.au/statistics/people/people-and-communities/location-census/latest-release (accessed on 30 August 2022).
- Australian Bureau of Statistics. 2074.0—Census of Population and Housing: Mesh Block Counts, Australia, 2016. 2017. Available online: https://www.abs.gov.au/ausstats/[email protected]/mf/2074.0 (accessed on 12 March 2022).
- Department of Water and Environmental Regulation. Perth Air Emissions Inventory 2011–12. Available online: https://www.der.wa.gov.au/our-work/programs/460-perth-air-emissions-study-2011-2012 (accessed on 2 February 2020).
- Jiao, W.; Hagler, G.; Williams, R.; Sharpe, R.; Brown, R.; Garver, D.; Judge, R.; Caudill, M.; Rickard, J.; Davis, M.; et al. Community Air Sensor Network (CAIRSENSE) project: Evaluation of low-cost sensor performance in a suburban environment in the southeastern United States. Atmos. Meas. Technol. 2016, 9, 5281–5292. [Google Scholar] [CrossRef]
- Australian Bureau of Statistics. Australian Statistical Geography Standard (ASGS): Volume 1—Main Structure and Greater Capital City Statistical Areas, July 2016; Australian Bureau of Statistics: Canberra, ACT, Australia, 2016.
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; MIT Press Ltd.: Cambridge, MA, USA, 2006. [Google Scholar]
- Ylisirniö, A.; Buchholz, A.; Mohr, C.; Li, Z.; Barreira, L.; Lambe, A.; Faiola, C.; Kari, E.; Yli-Juuti, T.; Nizkorodov, S.A.; et al. Composition and volatility of secondary organic aerosol (SOA) formed from oxidation of real tree emissions compared to simplified volatile organic compound (VOC) systems. Atmos. Chem. Phys. 2020, 20, 5629–5644. [Google Scholar] [CrossRef]
- Jaffe, L.S. Ambient Carbon Monoxide And Its Fate in the Atmosphere. J. Air Pollut. Control Assoc. 1968, 18, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.D.; Mitchell, T.J. Exploratory designs for computational experiments. J. Stat. Plan. Inference 1995, 43, 381–402. [Google Scholar] [CrossRef] [Green Version]
- Loeppky, J.L.; Sacks, J.; Welch, W.J. Choosing the Sample Size of a Computer Experiment: A Practical Guide. Technometrics 2009, 51, 366–376. [Google Scholar] [CrossRef] [Green Version]
- Bastos, L.S.; O’Hagan, A. Diagnostics for Gaussian Process Emulators. Technometrics 2009, 51, 425–438. [Google Scholar] [CrossRef]
- Salteli, A.; Chan, K.; Scott, E. Sensitivity Analysis; John Wiley: New York, NY, USA, 2000. [Google Scholar]
- Oakley, J.E.; O’Hagan, A. Probabilistic sensitivity analysis of complex models: A Bayesian approach. J. R. Stat. Soc. Ser. B Stat. Methodol. 2004, 66, 751–769. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2021. [Google Scholar]
- Roustant, O.; Ginsbourger, D.; Deville, Y. DiceKriging, DiceOptim: Two R packages for the analysis of computer experiments by kriging-based metamodeling and optimization. J. Stat. Softw. 2012, 51, 1–55. [Google Scholar] [CrossRef] [Green Version]
- Saltelli, A.; Tarantola, S.; Chan, K.P.S. A quantitative model-independent method for global sensitivity analysis of model output. Technometrics 1999, 41, 39–56. [Google Scholar] [CrossRef]
- Bertrand Iooss, A.; Da Veiga, S.; Janon, A.; Pujol, G. Package “Sensitivity” Title Global Sensitivity Analysis of Model Outputs. 2021. Available online: https://cran.r-project.org/web/packages/sensitivity/sensitivity.pdf (accessed on 13 November 2022).
- Graham, P.; Havas, L. Electric Vehicle Projections 2021; Commonwealth Scientific and Industrial Research Organisation: Melbourne, VIC, Australia, 2021. [Google Scholar] [CrossRef]
- Paton-Walsh, C.; Rayner, P.; Simmons, J.; Fiddes, S.L.; Schofield, R.; Bridgman, H.; Beaupark, S.; Broome, R.; Chambers, S.D.; Chang, L.T.-C.; et al. A Clean Air Plan for Sydney: An Overview of the Special Issue on Air Quality in New South Wales. Atmosphere 2019, 10, 774. [Google Scholar] [CrossRef]
- Barnett, A.G.; Williams, G.M.; Schwartz, J.; Best, T.L.; Neller, A.H.; Petroeschevsky, A.L.; Simpson, R.W. The effects of air pollution on hospitalizations for cardiovascular disease in elderly people in Australian and New Zealand cities. Environ. Health Perspect. 2006, 114, 1018–1023. [Google Scholar] [CrossRef] [Green Version]
- Hanigan, I.C.; Rolfe, M.I.; Knibbs, L.D.; Salimi, F.; Cowie, C.T.; Heyworth, J.; Marks, G.B.; Guo, Y.; Cope, M.; Bauman, A. All-cause mortality and long-term exposure to low level air pollution in the ‘45 and up study’ cohort, Sydney, Australia, 2006–2015. Environ. Int. 2019, 126, 762–770. [Google Scholar] [CrossRef]
- Dirgawati, M.; Hinwood, A.; Nedkoff, L.; Hankey, G.; Yeap, B.B.; Flicker, L.; Nieuwenhuijsen, M.; Brunekreef, B.; Heyworth, J. Long-term Exposure to Low Air Pollutant Concentrations and the Relationship with All-Cause Mortality and Stroke in Older. Men’s Epidemiol. 2019, 30, S82–S89. [Google Scholar] [CrossRef] [PubMed]
- Zosky, G.R.; Hoorn, S.V.; Abramson, M.J.; Dwyer, S.; Green, D.; Heyworth, J.; Jalaludin, B.B.; McCrindle-Fuchs, J.; Tham, R.; Marks, G.B. Principles for setting air quality guidelines to protect human health in Australia. Med. J. Aust. 2021, 214, 254–256.e1. [Google Scholar] [CrossRef] [PubMed]
- Vedrenne, M.; Borge, R.; Lumbreras, J.; Rodríguez, M.E. Advancements in the design and validation of an air pollution integrated assessment model for Spain. Environ. Model. Softw. 2014, 57, 177–191. [Google Scholar] [CrossRef] [Green Version]
- Winkler, S.L.; Anderson, J.E.; Garza, L.; Ruona, W.C.; Vogt, R.; Wallington, T.J. Vehicle criteria pollutant (PM, NOx, CO, HCs) emissions: How low should we go? NPJ Clim. Atmos. Sci. 2018, 1, 26. [Google Scholar] [CrossRef] [Green Version]
- Keywood, M.; Guyes, H.; Selleck, P.; Gillett, R. Quantification of secondary organic aerosol in an Australian urban location. Environ. Chem. 2011, 8, 115–126. [Google Scholar] [CrossRef]
- Lee, L.A.; Carslaw, K.S.; Pringle, K.J.; Mann, G.W. Mapping the uncertainty in global CCN using emulation. Atmos. Meas. Technol. 2012, 12, 9739–9751. [Google Scholar] [CrossRef] [Green Version]
- Sokan-Adeaga, M.A.; Ree, A.G.; Ayodeji, S.A.M.; Deborah, S.A.E.; Ejike, O.M. Secondary inorganic aerosols: Impacts on the global climate system and human health. Biodivers. Int. J. 2019, 3, 249–259. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, M.; Chen, Y.; Chen, D.; Pan, Y.; Song, T.; Ji, D.; Chen, Q.; Zhang, L. The nonlinear response of fine particulate matter pollution to ammonia emission reductions in North China. Environ. Res. Lett. 2021, 16, 034014. [Google Scholar] [CrossRef]
- Cao, H.; Henze, D.K.; Cady-Pereira, K.; McDonald, B.C.; Harkins, C.; Sun, K.; Bowman, K.W.; Fu, T.M.; Nawaz, M.O. COVID-19 Lockdowns Afford the First Satellite-Based Confirmation That Vehicles Are an Under-recognized Source of Urban NH3Pollution in Los Angeles. Environ. Sci. Technol. Lett. 2022, 9, 3–9. [Google Scholar] [CrossRef]
- Ghavam, S.; Vahdati, M.; Wilson, I.A.G.; Styring, P. Sustainable Ammonia Production Processes. Front. Energy Res. 2021, 9, 34. [Google Scholar] [CrossRef]
- Vanherle, K.; Lopez-Aparicio, S.; Grythe, H.; Lükewille, A.; Unterstaller, A.; Mayeres, I. Transport Non-Exhaust PM-Emissions. An Overview of Emission Estimates, Relevance, Trends and Policies—Eionet Portal. In ETC/ATNI Report 5/2020; European Environment Agency: Copenhagen, Denmark, 2021. [Google Scholar]
- Noël, C.; Vanroelen, C.; Gadeyne, S. Qualitative research about public health risk perceptions on ambient air pollution. A review study. SSM Popul. Health 2021, 15, 100879. [Google Scholar] [CrossRef] [PubMed]
- Larkin, A.; Hystad, P. Towards Personal Exposures: How Technology Is Changing Air Pollution and Health Research. Curr. Environ. Health Rep. 2017, 4, 463. [Google Scholar] [CrossRef] [PubMed]
- NSW EPA. Air Emissions Inventory for the Greater Metropolitan Region in NSW. Available online: https://www.epa.nsw.gov.au/your-environment/air/air-emissions-inventory (accessed on 20 March 2021).
- Goldsworthy, L.; Goldsworthy, B. Modelling of ship engine exhaust emissions in ports and extensive coastal waters based on terrestrial AIS data—An Australian case study. Environ Model Software. 2015, 63, 45–60. [Google Scholar] [CrossRef]
- Department of the Environment and Energy. National Pollutant Inventory 2019. Available online: http://npi.gov.au/ (accessed on 2 February 2020).
- Australian Standard AS/NZS. AS/NZS 3580.1.1:2007 Methods for Sampling and Analysis of Ambient Air Part 1.1: Guide to Siting Air Monitoring Equipment; Standards Australia: Sydney, NSW, Australia; Standards New Zealand: Wellington, New Zealand, 2007. [Google Scholar]
- Simon, H.; Baker, K.R.; Phillips, S. Compilation and interpretation of photochemical model performance statistics published between 2006 and 2012. Atmos Environ. 2012, 61, 124–139. [Google Scholar] [CrossRef]
- Thunis, P.; Georgieva, E.; Galmarini, S. A Procedure for Air Quality Models Benchmarking; Joint Research Centre: Ispra, Italy, 2011. [Google Scholar]
- Boylan, J.W.; Russell, A.G. PM and light extinction model performance metrics, goals, and criteria for three-dimensional air quality models. Atmos Environ. 2006, 40, 4946–4959. [Google Scholar] [CrossRef]
Parameter No. | Abbreviated Name | Description | Range * |
---|---|---|---|
X1 | PM2.5 | Particulate matter tailpipe emissions | 0 to 150% |
X2 | NOx | Oxides of nitrogen tailpipe emissions | 0 to 150% |
X3 | VOC | Volatile organic compound emissions | 0 to 150% |
X4 | CO | Carbon monoxide tailpipe emissions | 0 to 150% |
X5 | SO2 | Sulphur dioxide tailpipe emissions | 0 to 150% |
X6 | NH3 | Ammonia emissions tailpipe emissions | 0 to 150% |
X7 | GAS | Emissions from gas fire power stations | 0 to 150% |
X8 | COAL | Emissions from coal fire power stations | 0 to 150% |
Scenario | S1 ad | S2 bd | S3 cd | S4 e |
---|---|---|---|---|
Geographical area f | ||||
SA4 areas, population size (000 s) | ||||
Perth—Inner (170) | −0.60 | −0.06 | −0.69 | −0.81 |
Perth—North East (251) | −0.37 | −0.04 | −0.42 | −0.53 |
Perth—North West (535) | −0.39 | −0.05 | −0.45 | −0.57 |
Perth—South East (488) | −0.42 | −0.05 | −0.48 | −0.60 |
Perth—South West (403) | −0.31 | −0.02 | −0.35 | −0.49 |
Mandurah (97) | −0.09 | 0.01 | −0.08 | −0.23 |
GMR combined (1944) | −0.38 | −0.04 | −0.44 | −0.56 |
SA3 areas, population size (000 s) | ||||
Bunbury (102) | 0.02 | 0.06 | 0.08 | −0.16 |
Manjimup (23) | 0.01 | 0.02 | 0.03 | −0.06 |
Augusta—MR—Busselton (51) | 0.01 | 0.02 | 0.03 | −0.06 |
Surrounding areas combined (176) | 0.01 | 0.05 | 0.06 | −0.12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vander Hoorn, S.; Johnson, J.S.; Murray, K.; Smit, R.; Heyworth, J.; Lam, S.; Cope, M. Emulation of a Chemical Transport Model to Assess Air Quality under Future Emission Scenarios for the Southwest of Western Australia. Atmosphere 2022, 13, 2009. https://doi.org/10.3390/atmos13122009
Vander Hoorn S, Johnson JS, Murray K, Smit R, Heyworth J, Lam S, Cope M. Emulation of a Chemical Transport Model to Assess Air Quality under Future Emission Scenarios for the Southwest of Western Australia. Atmosphere. 2022; 13(12):2009. https://doi.org/10.3390/atmos13122009
Chicago/Turabian StyleVander Hoorn, Stephen, Jill S. Johnson, Kevin Murray, Robin Smit, Jane Heyworth, Sean Lam, and Martin Cope. 2022. "Emulation of a Chemical Transport Model to Assess Air Quality under Future Emission Scenarios for the Southwest of Western Australia" Atmosphere 13, no. 12: 2009. https://doi.org/10.3390/atmos13122009
APA StyleVander Hoorn, S., Johnson, J. S., Murray, K., Smit, R., Heyworth, J., Lam, S., & Cope, M. (2022). Emulation of a Chemical Transport Model to Assess Air Quality under Future Emission Scenarios for the Southwest of Western Australia. Atmosphere, 13(12), 2009. https://doi.org/10.3390/atmos13122009