Increase in the Intensity of Air–Sea Coupling in the Key ENSO Region during 1955–2020
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Singular Value Decomposition
2.3. Definition of the Three Periods during Global Temperature Change
2.4. Definition of NSOI
2.5. Expression of Air–Sea Coupling Strength
3. Trend of Air–Sea Coupling Strength
4. Changes in Coupling between SST and SSW
5. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fan, X.; Qin, Y.Y.; Gao, X. Interpretation of the main conclusions and suggestions of lPCC AR6 working group I report. Environ. Prot 2021, 49, 44–48. [Google Scholar] [CrossRef]
- Lin, Y.; Franzke, C.L. Scale-dependency of the global mean surface temperature trend and its implication for the recent hiatus of global warming. Sci. Rep. 2015, 5, 12971. [Google Scholar] [CrossRef]
- Dong, L.; McPhaden, M.J. The role of external forcing and internal variability in regulating global mean surface temperatures on decadal timescales. Environ. Res. Lett. 2017, 12, 034011. [Google Scholar] [CrossRef]
- McPhaden, M.J.; Santoso, A.; Cai, W. Introduction to El Niño Southern Oscillation in a Changing Climate. In El Niño Southern Oscillation in a Changing Climate, 1st ed.; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 1–19. [Google Scholar] [CrossRef]
- Wang, B.; Wu, R.; Fu, X. Pacific–East Asian Teleconnection: How Does ENSO Affect East Asian Climate? J. Clim. 2000, 13, 1517–1536. [Google Scholar] [CrossRef]
- McPhaden, M.J.; Zebiak, S.E.; Glantz, M.H. ENSO as an Integrating Concept in Earth Science. Science 2006, 314, 1740–1745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McPhaden, M.J.; Lee, T.; McClurg, D. El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophys. Res. Lett. 2011, 38, L15709. [Google Scholar] [CrossRef]
- Ke, M.; Wang, Z.; Pan, W.; Luo, H.; Yang, S.; Guo, R. Extremely Strong Western Pacific Subtropical High in May 2021 Following a La Niña Event: Role of the Persistent Convective Forcing over the Indian Ocean. Asia-Pac. J. Atmos. Sci. 2022, 1–12. [Google Scholar] [CrossRef]
- Bjerknes, J. Atmospheric teleconnections from the equatorial Pacific. Mon. Weather Rev. 1969, 97, 163–172. [Google Scholar] [CrossRef]
- Wang, C. A review of ENSO theories. Natl. Sci. Rev. 2018, 5, 813–825. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, R.H.; Liu, T.; Duan, W.; Yang, D.; Zheng, F.; Ren, H.; Lian, T.; Gao, C.; Chen, D.; et al. Progress in ENSO prediction and predictability study. Natl. Sci. Rev. 2018, 5, 826–839. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Li, Z.; Yu, J.Y.; Hu, X.; Dong, W.; He, S. El Niño–Southern Oscillation and its impact in the changing climate. Natl. Sci. Rev. 2018, 5, 840–857. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Lian, T. Frontier of El Niño-Southern Oscillation research. Chin. Sci. Bull. 2020, 65, 4001–4003. [Google Scholar] [CrossRef]
- Suarez, M.J.; Schopf, P.S. A delayed action oscillator for ENSO. J. Atmos. Sci. 1988, 45, 3283–3287. [Google Scholar] [CrossRef]
- Collins, M.; An, S.I.; Cai, W.; Ganachaud, A.; Guilyardi, E.; Jin, F.F.; Jochum, M.; Lengaigne, M.; Power, S.; Timmermann, A.; et al. The impact of global warming on the tropical Pacific Ocean and El Niño. Nat. Geosci. 2010, 3, 391–397. [Google Scholar] [CrossRef]
- Grothe, P.R.; Cobb, K.M.; Liguori, G.; Di Lorenzo, E.; Capotondi, A.; Lu, Y.; Cheng, H.; Edwards, R.L.; Southon, J.R.; Santos, G.M.; et al. Enhanced El Niño–Southern oscillation variability in recent decades. Geophys. Res. Lett. 2020, 47, e2019GL083906. [Google Scholar] [CrossRef]
- Cai, W.; Santoso, A.; Collins, M.; Dewitte, B.; Karamperidou, C.; Kug, J.S.; Lengaigne, M.; McPhaden, M.J. Changing El Niño–Southern Oscillation in a warming climate. Nat. Rev. Earth Environ. 2021, 2, 628–644. [Google Scholar] [CrossRef]
- Vecchi, G.A.; Soden, B.J.; Wittenberg, A.T.; Held, I.M.; Leetmaa, A.; Harrison, M.J. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 2006, 441, 73–76. [Google Scholar] [CrossRef]
- Deng, L.; Yang, X.; Xie, Q. ENSO frequency change in coupled climate models as response to the increasing CO2 concentration. Chin. Sci. Bull. 2010, 55, 744–751. [Google Scholar] [CrossRef]
- Philip, S.; Van Oldenborgh, G.J. Shifts in ENSO coupling processes under global warming. Geophys. Res. Lett. 2006, 33, L11704. [Google Scholar] [CrossRef]
- Kim, S.T.; Jin, F.F. An ENSO stability analysis. Part II: Results from the twentieth and twenty-first century simulations of the CMIP3 models. Clim. Dynam. 2011, 36, 1609–1627. [Google Scholar] [CrossRef]
- Chen, L.; Li, T.; Yu, Y. Causes of strengthening and weakening of ENSO amplitude under global warming in four CMIP5 models. J. Clim. 2015, 28, 3250–3274. [Google Scholar] [CrossRef]
- Cai, W.; Wang, G.; Dewitte, B.; Wu, L.; Santoso, A.; Takahashi, K.; Yang, Y.; Carréric, A.; McPhaden, M.J. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 2018, 564, 201–206. [Google Scholar] [CrossRef]
- Xia, Y.; Sun, X.G.; Yan, Y.; Feng, W.Y.; Huang, F.; Yuan, X.Q. Change of ENSO characteristics in response to global warming. Chin. Sci. Bull. 2017, 62, 1738–1751. [Google Scholar] [CrossRef]
- Huang, B.; Thorne, P.W.; Banzon, V.F.; Boyer, T.; Chepurin, G.; Lawrimore, J.H.; Menne, M.J.; Smith, T.M.; Vose, R.S.; Zhang, H.M. Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Clim. 2017, 30, 8179–8205. [Google Scholar] [CrossRef]
- Climate Prediction Center—Monitoring & Data: Current Monthly Atmospheric and Sea Surface Temperatures Index Valuest. Available online: https://origin.cpc.ncep.noaa.gov/data/indices/ (accessed on 30 July 2022).
- Kalney. The ncep/ncar 40-year reanalysis project. Bull. Amer. Meteor. Soc. 1996, 74, 789–799. [Google Scholar] [CrossRef]
- Cheng, L.; Trenberth, K.E.; Fasullo, J.; Boyer, T.; Abraham, J.; Zhu, J. Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv. 2017, 3, e1601545. [Google Scholar] [CrossRef] [Green Version]
- Bretherton, C.S.; Smith, C.; Wallace, J.M. An intercomparison of methods for finding coupled patterns in climate data. J. Clim. 1992, 5, 541–560. [Google Scholar] [CrossRef]
- Wallace, J.M.; Smith, C.; Bretherton, C.S. Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J. Clim. 1992, 5, 561–576. [Google Scholar] [CrossRef]
- Wu, H.B.; Wu, L. Methods for Diagnosing and Forecasting Climate Variability, 1st ed.; Meteorological Press: Beijing, China, 2005; pp. 103–162. [Google Scholar]
- Yang, X.; Zhu, Y.; Qian, X.; Ren, X.; Xu, G. Advances in studies of Pacific decadal oscillation. Chin. J. Atmos. Sci. 2004, 28, 979–992. [Google Scholar]
- Kwon, M.; Yeh, S.W.; Park, Y.G.; Lee, Y.K. Changes in the linear relationship of ENSO–PDO under the global warming. Int. J. Climatol. 2013, 33, 1121–1128. [Google Scholar] [CrossRef]
- Shi, Y.; Su, J. A new equatorial oscillation index for better describing ENSO and westerly wind bursts. J. Meteorol. Res. 2020, 34, 1025–1037. [Google Scholar] [CrossRef]
- Xu, J.; Zhu, Q.; Shi, N. The interaction of East Asian winter monsoon with ENSO cycle and their interdecadal variations in last century. Sci. Atmos. Sin. 1997, 21, 648–657. [Google Scholar] [CrossRef]
- Yeh, S.W.; Kug, J.S.; Dewitte, B.; Kwon, M.H.; Kirtman, B.P.; Jin, F.F. El Niño in a changing climate. Nature 2009, 461, 511–514. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, T.; Yu, Y.; Behera, S.K. A possible explanation for the divergent projection of ENSO amplitude change under global warming. Clim. Dynam. 2017, 49, 3799–3811. [Google Scholar] [CrossRef]
- Behera, S.; Yamagata, T. Climate dynamics of ENSO Modoki phenomena. In Oxford Research Encyclopedia of Climate Science; Oxford University Press: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Ashok, K.; Behera, S.K.; Rao, S.A.; Weng, H.; Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res. 2007, 112, C11007. [Google Scholar] [CrossRef]
- Kao, H.Y.; Yu, J.Y. Contrasting eastern-Pacific and central-Pacific types of ENSO. J. Clim. 2009, 22, 615–632. [Google Scholar] [CrossRef]
- Lübbecke, J.F.; McPhaden, M.J. Assessing the twenty-first-century shift in ENSO variability in terms of the Bjerknes stability index. J. Clim. 2014, 27, 2577–2587. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.T.; Cai, W.; Jin, F.F.; Santoso, A.; Wu, L.; Guilyardi, E.; An, S.I. Response of El Niño sea surface temperature variability to greenhouse warming. Nat. Clim. Chang. 2014, 4, 786–790. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Xu, J. Increase in the Intensity of Air–Sea Coupling in the Key ENSO Region during 1955–2020. Atmosphere 2022, 13, 2025. https://doi.org/10.3390/atmos13122025
Liu Z, Xu J. Increase in the Intensity of Air–Sea Coupling in the Key ENSO Region during 1955–2020. Atmosphere. 2022; 13(12):2025. https://doi.org/10.3390/atmos13122025
Chicago/Turabian StyleLiu, Zhiqing, and Jianjun Xu. 2022. "Increase in the Intensity of Air–Sea Coupling in the Key ENSO Region during 1955–2020" Atmosphere 13, no. 12: 2025. https://doi.org/10.3390/atmos13122025
APA StyleLiu, Z., & Xu, J. (2022). Increase in the Intensity of Air–Sea Coupling in the Key ENSO Region during 1955–2020. Atmosphere, 13(12), 2025. https://doi.org/10.3390/atmos13122025