A Case Study of Bias Correction and the Dynamical Downscaling of CFSv2 S2S Forecasts Using a WRF Model: Heatwave in 2018 over South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Method of Bias Correction
2.3. Experimental Design
3. Results
3.1. Analysis of Simulation Results
3.1.1. Weekly Mean of 2 m Temperature
3.1.2. Synoptic Analysis
3.2. Evaluation of Daily Temperature Forecast
3.3. Evaluation of Agro-Meteorological Indexes
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Morales, M.S.; Cook, E.R.; Barichivich, J.; Christie, D.A.; Villalba, R.; LeQuesne, C.; Srur, A.M.; Ferrero, M.E.; González-Reyes, A.; Couvreux, F.; et al. Six hundred years of South American tree rings reveal an increase in severe hydroclimatic events since mid-20th century. Proc. Natl. Acad. Sci. USA 2020, 117, 16816–16823. [Google Scholar] [CrossRef] [PubMed]
- Perkins-Kirkpatrick, S.E.; Lewis, S.C. Increasing trends in regional heatwaves. Nat. Commun. 2020, 11, 3357. [Google Scholar] [CrossRef]
- Heinicke, S.; Frieler, K.; Jägermeyr, J.; Mengel, M. Global gridded crop models underestimate yield responses to droughts and heatwaves. Environ. Res. Lett. 2022, 17, 044026. [Google Scholar] [CrossRef]
- Im, E.S.; Ha, S.; Qiu, L.; Hur, J.; Jo, S.; Shim, K.M. An Evaluation of Temperature-Based Agricultural Indices Over Korea From the High-Resolution WRF Simulation. Front. Earth Sci. 2021, 9, 656787. [Google Scholar] [CrossRef]
- Song, C.Y.; Kim, S.H.; Ahn, J.B. Improvement in Seasonal Prediction of Precipitation and Drought over the United States Based on Regional Climate Model Using Empirical Quantile Mapping. Atmosphere 2021, 31, 637–656. [Google Scholar]
- Vitart, F.; Ardilouze, C.; Bonet, A.; Brookshaw, A.; Chen, M.; Codorean, C.; Déqué, M.; Ferranti, L.; Fucile, E.; Fuentes, M.; et al. The Subseasonal to Seasonal (S2S) Prediction Project Database. Bull. Am. Meteorol. Soc. 2017, 98, 163–173. [Google Scholar] [CrossRef]
- Kim, S.W.; Kim, H.; Song, K.; Son, S.W.; Lim, Y.; Kang, H.S.; Hyun, Y.K. Subseasonal-to-Seasonal (S2S) Prediction Skills of GloSea5 Model: Part 1. Geopotential Height in the Northern Hemisphere Extratropics. Atmosphere 2018, 28, 233–245. [Google Scholar] [CrossRef]
- Kim, S.J.; Bae, S.J.; Lee, S.J.; Jang, M.W. Monthly Agricultural Reservoir Storage Forecasting Using Machine Learning. Atmosphere 2022, 13, 1887. [Google Scholar] [CrossRef]
- Brunet, G.; Shapiro, M.; Hoskins, B.; Moncrieff, M.; Dole, R.; Kiladis, G.N.; Kirtman, B.; Lorenc, A.; Mills, B.; Morss, R.; et al. Collaboration of the Weather and Climate Communities to Advance Subseasonal-to-Seasonal Prediction. Bull. Am. Meteorol. Soc. 2010, 91, 1397–1406. [Google Scholar] [CrossRef]
- Mariotti, A.; Ruti, P.M.; Rixen, M. Progress in subseasonal to seasonal prediction through a joint weather and climate community effort. npj Clim. Atmos. Sci. 2018, 1, 4. [Google Scholar] [CrossRef]
- Manrique-Suñén, A.; Gonzalez-Reviriego, N.; Torralba, V.; Cortesi, N.; Doblas-Reyes, F.J. Choices in the Verification of S2S Forecasts and Their Implications for Climate Services. Mon. Weather Rev. 2020, 148, 3995–4008. [Google Scholar] [CrossRef]
- Saha, S.; Nadiga, S.; Thiaw, C.; Wang, J.; Wang, W.; Zhang, Q.; Van den Dool, H.M.; Pan, H.L.; Moorthi, S.; Behringer, D.; et al. The NCEP Climate Forecast System. J. Clim. 2006, 19, 3483–3517. [Google Scholar] [CrossRef] [Green Version]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.T.; Chuang, H.y.; Iredell, M.; et al. The NCEP Climate Forecast System Version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Tian, D.; Wood, E.; Yuan, X. CFSv2-based sub-seasonal precipitation and temperature forecast skill over the contiguous United States. Hydrol. Earth Syst. Sci. Discuss. 2016, 21, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Shin, D.W.; Cocke, S. Alternative ways to evaluate a seasonal dynamical downscaling system. J. Geophys. Res. Atmos. 2013, 118, 13443–13448. [Google Scholar] [CrossRef]
- Shin, D.W.; Baigorria, G.A.; Romero, C.C.; Cocke, S.; Oh, J.H.; Kim, B.M. Assessing crop yield simulations driven by the NARCCAP regional climate models in the southeast United States. J. Geophys. Res. Atmos. 2017, 122, 2549–2558. [Google Scholar] [CrossRef]
- Hari Prasad, K.B.R.R.; Ramu, D.A.; Rao, S.A.; Hameed, S.N.; Samanta, D.; Srivastava, A. Reducing Systematic Biases Over the Indian Region in CFS V2 by Dynamical Downscaling. Earth Space Sci. 2021, 8, e2020EA001507. [Google Scholar] [CrossRef]
- Manzanas, R.; Gutiérrez, J.M.; Fernández, J.; van Meijgaard, E.; Calmanti, S.; Magariño, M.E.; Cofiño, A.S.; Herrera, S. Dynamical and statistical downscaling of seasonal temperature forecasts in Europe: Added value for user applications. Clim. Serv. 2018, 9, 44–56. [Google Scholar] [CrossRef]
- Dasari, H.P.; Salgado, R.; Perdigao, J.; Challa, V.S. A Regional Climate Simulation Study Using WRF-ARW Model over Europe and Evaluation for Extreme Temperature Weather Events. Int. J. Atmos. Sci. 2014, 2014, 704079. [Google Scholar] [CrossRef] [Green Version]
- Bruyère, C.L.; Done, J.M.; Holland, G.J.; Fredrick, S. Bias corrections of global models for regional climate simulations of high-impact weather. Clim. Dyn. 2014, 43, 1847–1856. [Google Scholar] [CrossRef] [Green Version]
- Rocheta, E.; Evans, J.P.; Sharma, A. Can Bias Correction of Regional Climate Model Lateral Boundary Conditions Improve Low-Frequency Rainfall Variability? J. Clim. 2017, 30, 9785–9806. [Google Scholar] [CrossRef]
- Maraun, D. Bias Correcting Climate Change Simulations—A Critical Review. Curr. Clim. Chang. Rep. 2016, 2, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Qiu, L.; Im, E.S.; Hur, J.; Shim, K.M. Added value of very high resolution climate simulations over South Korea using WRF modeling system. Clim. Dyn. 2020, 54, 173–189. [Google Scholar] [CrossRef]
- Hong, S.Y.; Dudhia, J.; Chen, S.H. A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation. Mon. Weather Rev. 2004, 132, 103–120. [Google Scholar] [CrossRef]
- Iacono, M.J.; Delamere, J.S.; Mlawer, E.J.; Shephard, M.W.; Clough, S.A.; Collins, W.D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. Atmos. 2008, 113, 13. [Google Scholar] [CrossRef]
- Jiménez, P.A.; Dudhia, J.; González-Rouco, J.F.; Navarro, J.; Montávez, J.P.; García-Bustamante, E. A Revised Scheme for the WRF Surface Layer Formulation. Mon. Weather Rev. 2012, 140, 898–918. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Dudhia, J. Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity. Mon. Weather Rev. 2001, 129, 569–585. [Google Scholar] [CrossRef]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2006, 134, 2318–2341. [Google Scholar] [CrossRef] [Green Version]
- Kain, J.S.; Weiss, S.J.; Bright, D.R.; Baldwin, M.E.; Levit, J.J.; Carbin, G.W.; Schwartz, C.S.; Weisman, M.L.; Droegemeier, K.K.; Weber, D.B.; et al. Some Practical Considerations Regarding Horizontal Resolution in the First Generation of Operational Convection-Allowing NWP. Weather Forecast. 2008, 23, 931–952. [Google Scholar] [CrossRef]
- Park, J.; Chae, Y. Analysis of heat-related illness and excess mortality by heat waves in South Korea in 2018. J. Korean Geogr. Soc. 2020, 55, 391–408. [Google Scholar] [CrossRef]
- Hee-Dong, L.; Ki-Hong, M.; Jeong-Ho, B.; Dong-Hyun, C. Characteristics and Comparison of 2016 and 2018 Heat Wave in Korea. Atmosphere 2020, 30, 1–15. [Google Scholar] [CrossRef]
- Thuy Tran, L.; Lee, C.K.; Jeong, J.H.; Lee, H.S.; Yang, S.Y.; Im, Y.H.; Hwang, W.H. Impact of Heat Stress on Pollen Fertility Rate at the Flowering Stage in Korean Rice (Oryza sativa L.) Cultivars. J. Korean Soc. Crop. Sci. 2020, 65, 22–29. [Google Scholar] [CrossRef]
- Piticar, A. Changes in agro-climatic indices related to temperature in Central Chile. Int. J. Biometeorol. 2019, 63, 499–510. [Google Scholar] [CrossRef] [PubMed]
CASE # | Variables | NOBC (27 km) | NOBC (9 km) | NOBC (3 km) | BC (27 km) | BC (9 km) | BC (3 km) |
---|---|---|---|---|---|---|---|
CASE 1 | Tavg | 4.926 | 4.392 | 4.030 | 4.949 | 4.398 | 4.034 |
Tmax | 6.595 | 6.002 | 5.506 | 6.474 | 5.911 | 5.416 | |
Tmin | 4.075 | 3.659 | 3.481 | 4.243 | 3.769 | 3.558 | |
CASE 2 | Tavg | 3.858 | 3.073 | 2.618 | 4.051 | 3.276 | 2.792 |
Tmax | 5.348 | 4.562 | 3.987 | 5.465 | 4.734 | 4.141 | |
Tmin | 3.629 | 2.908 | 2.609 | 3.927 | 3.138 | 2.798 |
CASE # | Variables | NOBC (27 km) | NOBC (9 km) | NOBC (3 km) | BC (27 km) | BC (9 km) | BC (3 km) |
---|---|---|---|---|---|---|---|
CASE 1 | Tavg | 0.217 | 0.198 | 0.182 | 0.213 | 0.195 | 0.179 |
Tmax | 0.193 | 0.172 | 0.158 | 0.194 | 0.173 | 0.158 | |
Tmin | 0.189 | 0.170 | 0.162 | 0.197 | 0.175 | 0.166 | |
CASE 2 | Tavg | 0.164 | 0.140 | 0.123 | 0.167 | 0.145 | 0.127 |
Tmax | 0.140 | 0.112 | 0.095 | 0.147 | 0.119 | 0.102 | |
Tmin | 0.155 | 0.125 | 0.112 | 0.167 | 0.135 | 0.120 |
CASE # | Variables | NOBC (27 km) | NOBC (9 km) | NOBC (3 km) | BC (27 km) | BC (9 km) | BC (3 km) |
---|---|---|---|---|---|---|---|
CASE 1 | Tavg | 0.196 | 0.162 | 0.164 | 0.124 | 0.147 | 0.145 |
Tmax | 0.046 | 0.058 | 0.092 | 0.058 | 0.100 | 0.105 | |
Tmin | 0.367 | 0.303 | 0.294 | 0.253 | 0.244 | 0.249 | |
CASE 2 | Tavg | 0.521 | 0.581 | 0.574 | 0.518 | 0.549 | 0.559 |
Tmax | 0.437 | 0.491 | 0.472 | 0.432 | 0.450 | 0.451 | |
Tmin | 0.371 | 0.440 | 0.444 | 0.401 | 0.448 | 0.459 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, J.; Oh, J.; Huh, M. A Case Study of Bias Correction and the Dynamical Downscaling of CFSv2 S2S Forecasts Using a WRF Model: Heatwave in 2018 over South Korea. Atmosphere 2022, 13, 2086. https://doi.org/10.3390/atmos13122086
Oh J, Oh J, Huh M. A Case Study of Bias Correction and the Dynamical Downscaling of CFSv2 S2S Forecasts Using a WRF Model: Heatwave in 2018 over South Korea. Atmosphere. 2022; 13(12):2086. https://doi.org/10.3390/atmos13122086
Chicago/Turabian StyleOh, Jiwon, Jaiho Oh, and Morang Huh. 2022. "A Case Study of Bias Correction and the Dynamical Downscaling of CFSv2 S2S Forecasts Using a WRF Model: Heatwave in 2018 over South Korea" Atmosphere 13, no. 12: 2086. https://doi.org/10.3390/atmos13122086
APA StyleOh, J., Oh, J., & Huh, M. (2022). A Case Study of Bias Correction and the Dynamical Downscaling of CFSv2 S2S Forecasts Using a WRF Model: Heatwave in 2018 over South Korea. Atmosphere, 13(12), 2086. https://doi.org/10.3390/atmos13122086