Optimal Solar Farm Site Selection in the George Town Conurbation Using GIS-Based Multi-Criteria Decision Making (MCDM) and NASA POWER Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overall Framework
2.2. Study Area
2.3. Data Description
2.3.1. Climate
2.3.2. Geospatial Data
2.3.3. NASA POWER Data
2.4. Validation of NASA POWER Data
2.5. Criteria Definition
2.5.1. Climatic Criteria
2.5.2. Orography Criteria
2.5.3. Environmental Criteria
2.5.4. Economic Criteria
2.6. Restriction Definition
2.7. GIS-Based Multi-Criteria Evaluation Methodology
- The definition of the goal, where the goal of this study is the identification of suitable sites for a cost-effective solar farm installation;
- The identification of the essential criteria and constraints. Their layers are processed in a 30 m raster environment prior to the analysis;
- The scoring standardization of each factor that was expressed in original units, such as meters, percentage, and hours needs to be converted into an index using the same scale, to enable the evaluation between each criterion [79]. This study uses Elboshy et al. [80] as a basis for the suitability scoring, where the value five (5) indicates the “highly suitable” pixels and the value one (1) is assigned for the “not suitable” pixels [80]. Table 4 shows the suitability rating for each criterion included in this study. The suitability score is calculated using the suitability equation, Equation (6).
- 4.
- In the criterion’s weightage assignment, the opinion of five local professionals is collected via a questionnaire. In controlling the quality of the response, these experts were carefully chosen from various solar energy-related businesses (i.e., solar farms, solar panel providers, and solar panel manufacturers) with a working experience of more than three years within the study area. To prevent personal bias, the opinions from the five experts are taken where the final weightage is obtained through the median method. The questionnaire was developed using the analytical hierarchy process (AHP) approach and was distributed through the survey monkey platform. The questionnaire consists of a pairwise comparison matrix, in which the experts were asked to assess the relative importance of a criterion against another using the scoring range from 1 (least important) to 9 (most important). The full range is shown in Table 5.
- 5.
- The combination of all criteria layers, according to their assigned weights, are summed in the weighted overlay process to generate the suitability map for each criteria category. Finally, the overlay techniques (6) of ArcGIS 10.4 is used to overlay the criteria maps together, generating the initial suitability map. A raster calculator is further used to combine the initial suitability map and restriction layers, producing the final suitability map and enabling the feasible locations to be identified. The highly suitable sites are further screened by the size of the suitable area. To generate 1 MW power per hour, the EC Malaysia has listed the land size requirement for a solar farm to be 2.5 acres under a high sun exposure and 5 acres under a medium sun exposure.
2.8. Model Evaluation
2.8.1. Model Validation
2.8.2. Sensitivity Analysis
3. Results
3.1. NASA POWER Data Validation
3.2. AHP’s Pairwise Comparison Matrix
3.3. GIS-Based MCDM
3.4. Model Evaluation
3.4.1. Model Validation
3.4.2. Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- IEA. World Energy Balances 2021: Overview. 2021. Available online: www.iea.org/weo (accessed on 10 June 2022).
- IEA. World Energy Outlook 2021—Revised Version October 2021. Available online: https://www.iea.org/reports/world-energy-balances-overview/world (accessed on 10 June 2022).
- United Nations Statistics División. The Energy Progress Report 2021; IEA: Paris, France, 2021; pp. 158–177. Available online: https://trackingsdg7.esmap.org/data/files/download-documents/2021_tracking_sdg7_chapter_6_outlook_for_sdg7.pdf (accessed on 22 June 2022).
- Al Garni, H.Z.; Awasthi, A. Solar PV Power Plants Site Selection: A Review; Elsevier Inc.: Amsterdam, The Netherlands, 2018; Volume 1, ISBN 9780128132173. [Google Scholar]
- Ali, S.; Taweekun, J.; Techato, K.; Waewsak, J.; Gyawali, S. GIS Based site suitability assessment for wind and solar farms in Songkhla, Thailand. Renew. Energy 2019, 132, 1360–1372. [Google Scholar] [CrossRef]
- Khare, V.; Nema, S.; Baredar, P. Solar-wind hybrid renewable energy system: A review. Renew. Sustain. Energy Rev. 2016, 58, 23–33. [Google Scholar] [CrossRef]
- Ashnani, M.H.M.; Johari, A.; Hashim, H.; Hasani, E. A source of renewable energy in Malaysia, why biodiesel? Renew. Sustain. Energy Rev. 2014, 35, 244–257. [Google Scholar] [CrossRef]
- Ekonomi Malaysia. Eleventh Malaysia Plan, 2016–2020: Anchoring Growth on People; Economic Planning Unit; Prime Minister’s Department: Putrajaya, Malaysia, 2015; Volume 23, ISBN 9789675842085. [Google Scholar]
- Abdullah, W.S.W.; Osman, M.; Kadir, M.Z.A.A.; Verayiah, R. The potential and status of renewable energy development in Malaysia. Energies 2019, 12, 2437. [Google Scholar] [CrossRef] [Green Version]
- MIDA. Malaysia Focusing on Increasing Renewable Energy Capacity. Available online: https://www.mida.gov.my/mida-news/malaysia-focusing-on-increasing-renewable-energy-capacity/ (accessed on 15 July 2022).
- Mekhilef, S.; Safari, A.; Mustaffa, W.E.S.; Saidur, R.; Omar, R.; Younis, M.A.A. Solar Energy in Malaysia: Current State and Prospects. Renew. Sustain. Energy Rev. 2012, 16, 386–396. [Google Scholar] [CrossRef]
- Ludin, N.A.; Affandi, N.A.A.; Purvis-Roberts, K.; Ahmad, A.; Ibrahim, M.A.; Sopian, K.; Jusoh, S. Environmental impact and levelised cost of energy analysis of solar photovoltaic systems in selected Asia Pacific Region: A cradle-to-grave approach. Sustainability 2021, 13, 396. [Google Scholar] [CrossRef]
- Eldrandaly, K. Developing a GIS-Based MCE site selection tool in ArcGIS using COM Technology. Int. Arab. J. Inf. Technol. 2013, 10, 263–274. [Google Scholar]
- Eastman, J. Multi-criteria evaluation and GIS. Geogr. Inf. Syst. 1999, 1, 493–502. [Google Scholar]
- Aly, A.; Jensen, S.S.; Pedersen, A.B. Solar power potential of Tanzania: Identifying CSP and PV hot spots through a GIS multicriteria decision making analysis. Renew. Energy 2017, 113, 159–175. [Google Scholar] [CrossRef]
- Doorga, J.R.S.; Rughooputh, S.D.D.V.; Boojhawon, R. Multi-criteria GIS-based modelling technique for identifying potential solar farm sites: A case study in Mauritius. Renew. Energy 2019, 133, 1201–1219. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Truong, M.H.; Phan, D.T. Gis-based simulation for solar farm site selection in South-Central Vietnam. GeoJournal 2021, 8, 3685–3699. [Google Scholar] [CrossRef]
- Sabo, M.L.; Mariun, N.; Hizam, H.; Mohd Radzi, M.A.; Zakaria, A. Spatial energy predictions from large-scale photovoltaic power plants located in optimal sites and connected to a smart grid in peninsular Malaysia. Renew. Sustain. Energy Rev. 2016, 66, 79–94. [Google Scholar] [CrossRef]
- Lurwan, S.M.; Idrees, M.O.; Ahmed, G.B.; Lay, U.S.; Mariun, N. GIS-based optimal site selection for installation of large-scale smart grid-connected photovoltaic (PV) power plants in Selangor, Malaysia. Am. J. Appl. Sci. 2017, 14, 174–183. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, H.S.; Sunarso, A.; Ibrahim-Bathis, K.; Murti, S.A.; Budiarto, I. GIS-AHP multi criteria decision analysis for the optimal location of solar energy plants at Indonesia. Energy Rep. 2020, 6, 3249–3263. [Google Scholar] [CrossRef]
- Magalhães, I.B.; Cabral de Barros Nogueira, G.C.; Lage Alves, I.S.; Calijuri, M.L.; Lorentz, J.F.; do Carmo Alves, S. Site suitability for photovoltaic energy expansion: A Brazilian’s high demand states study case. Remote Sens. Appl. 2020, 19, 100341. [Google Scholar] [CrossRef]
- Yatu, G.; Sailesh, S. Modelling of potential renewable energy in Papua New Guinea. Spat. Inf. Res. 2022, 30, 355–370. [Google Scholar] [CrossRef]
- Piyatadsananon, P. Spatial factors consideration in site selection of ground-mounted PV power plants. Energy Procedia 2016, 100, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Huang, Z.; Wang, H.; Yin, G.; Bao, Y.; Dong, Q.; Liu, Y. Site selection for hybrid offshore wind and wave power plants using a four-stage framework: A case study in Hainan, China. Ocean Coast. Manag. 2022, 218, 106035. [Google Scholar] [CrossRef]
- Khazael, S.M.; Al-Bakri, M. The optimum site selection for solar energy farms using AHP in GIS environment, a case study of Iraq. Iraqi J. Sci. 2021, 62, 4571–4587. [Google Scholar] [CrossRef]
- Ibrahim, G.R.F.; Hamid, A.A.; Darwesh, U.M.; Rasul, A. A GIS-Based Boolean Logic-Analytical Hierarchy Process for Solar Power Plant (Case Study: Erbil Governorate—Iraq). Environ. Dev. Sustain. 2021, 23, 6066–6083. [Google Scholar] [CrossRef]
- Akif Günen, M. Evaluation of GIS based ranking and AHP methods in selecting the most suitable site: A case study in Kayseri, Turkey. Environ. Sci. Pollut. Res. 2021, 28, 1–28. [Google Scholar]
- Akkas, O.P.; Erten, M.Y.; Cam, E.; Inanc, N. Optimal site selection for a solar power plant in the central Anatolian region of Turkey. Int. J. Photoenergy 2017, 2017, 7452715. [Google Scholar] [CrossRef] [Green Version]
- Hassaan, M.A.; Hassan, A.; Al-Dashti, H. GIS-based suitability analysis for siting solar power plants in Kuwait. Egypt. J. Remote Sens. Space Sci. 2021, 24, 453–461. [Google Scholar] [CrossRef]
- Alhammad, A.; Sun, Q.; Yaguang, T. Optimal solar plant site identification using GIS and remote. Energies 2022, 15, 312. [Google Scholar] [CrossRef]
- Rehman, S.; Baseer, M.A.; Alhems, L.M. GIS-based multi-criteria wind farm site selection methodology. FME Trans. 2020, 48, 855–867. [Google Scholar] [CrossRef]
- Hasti, F.; Mamkhezri, J.; Pezhooli, N.; McFerrin, R. Optimal Pv sites selection using Gis-based modelling techniques and assessing environmental and economic impacts: The case of Kurdistan. SSRN Electron. J. 2022. [Google Scholar] [CrossRef]
- Barzehkar, M.; Parnell, K.E.; Mobarghaee Dinan, N.; Brodie, G. Decision support tools for wind and solar farm site selection in Isfahan Province, Iran. Clean Technol. Environ. Policy 2021, 23, 1179–1195. [Google Scholar] [CrossRef]
- Noorollahi, Y.; Ghenaatpisheh Senani, A.; Fadaei, A.; Simaee, M.; Moltames, R. A Framework for GIS-based site selection and technical potential evaluation of PV solar farm using fuzzy-boolean logic and AHP multi-criteria decision-making approach. Renew. Energy 2022, 186, 89–104. [Google Scholar] [CrossRef]
- Zoghi, M.; Houshang Ehsani, A.; Sadat, M.; javad Amiri, M.; Karimi, S. Optimization solar site selection by fuzzy logic model and weighted linear combination method in arid and semi-arid region: A case study Isfahan-IRAN. Renew. Sustain. Energy Rev. 2017, 68, 986–996. [Google Scholar] [CrossRef]
- Sánchez-Lozano, J.M.; Henggeler Antunes, C.; García-Cascales, M.S.; Dias, L.C. GIS-based photovoltaic solar farms site selection using ELECTRE-TRI: Evaluating the case for Torre Pacheco, Murcia, Southeast of Spain. Renew. Energy 2014, 66, 478–494. [Google Scholar] [CrossRef]
- Suh, J.; Brownson, J.R.S. Solar farm suitability using geographic information system fuzzy sets and analytic hierarchy processes: Case study of Ulleung Island, Korea. Energies 2016, 9, 648. [Google Scholar] [CrossRef] [Green Version]
- Finn, T.; McKenzie, P. A High-resolution suitability index for solar farm location in complex landscapes. Renew. Energy 2020, 158, 520–533. [Google Scholar] [CrossRef]
- Chaouachi, A.; Covrig, C.F.; Ardelean, M. Multi-criteria selection of offshore wind farms: Case study for the Baltic States. Energy Policy 2017, 103, 179–192. [Google Scholar] [CrossRef]
- Derdouri, A.; Murayama, Y. Onshore Wind farm suitability analysis using GIS-based analytic hierarchy process: A case study of Fukushima Prefecture, Japan. Geoinformatics Geostat. 2018, 16, 2. [Google Scholar] [CrossRef]
- Kaymaz, Ç.K.; Çakır, Ç.; Birinci, S.; Kızılkan, Y. GIS-Fuzzy DEMATEL MCDA model in the evaluation of the areas for ecotourism development: A case study of “Uzundere”, Erzurum-Turkey. Appl. Geogr. 2021, 136, 102577. [Google Scholar] [CrossRef]
- Asadi, M.; Pourhossein, K. Wind and solar farms site selection using geographical information system (GIS), based on multi criteria decision making (MCDM) methods: A case-study for East-Azerbaijan. In Proceedings of the 2019 Iranian Conference on Renewable Energy and Distributed Generation, ICREDG, Tehran, Iran, 11–12 June 2019. [Google Scholar] [CrossRef]
- Doljak, D.; Stanojević, G. Evaluation of natural conditions for site selection of ground-mounted photovoltaic power plants in Serbia. Energy 2017, 127, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Li, Y.; Zheng, L.; Cui, L.; Li, S.; Li, W.; Cai, Y. Site selection of wind farms using GIS and multi-criteria decision making method in Wafangdian, China. Energy 2020, 207, 118222. [Google Scholar] [CrossRef]
- Akhtar, R.; Azam, K.; Babar, A.R.; Khalid, Q.S.; Nawaz, R.; Ahmad, I. Site selection of solar farms deploying fuzzy analytical hierarchy process (F-AHP) a KPK based study. J. Eng. Appl. Sci. (JEAS) Univ. Eng. Technol. Peshawar 2020, 39, 14–21. [Google Scholar] [CrossRef]
- Beriro, D.; Nathanail, J.; Salazar, J.; Kingdon, A.; Marchant, A.; Richardson, S.; Gillet, A.; Rautenberg, S.; Hammond, E.; Beardmore, J.; et al. A decision support system to assess the feasibility of onshore renewable energy infrastructure. Renew. Sustain. Energy Rev. 2022, 168, 112771. [Google Scholar] [CrossRef]
- Aljawarneh, S.; Lara, J.A.; Yassein, M.B. A visual big data system for the prediction of weather-related variables: Jordan-Spain case study. Multimed. Tools Appl. 2020. [Google Scholar] [CrossRef]
- Bai, P.; Liu, X. Evaluation of five satellite-based precipitation products in two gauge-scarce basins on the Tibetan Plateau. Remote Sens. 2018, 10, 1316. [Google Scholar] [CrossRef] [Green Version]
- Ang, R.; Kinouchi, T.; Zhao, W. Evaluation of daily gridded meteorological datasets for hydrological modeling in data-sparse basins of the largest lake in Southeast Asia. J. Hydrol. Reg. Stud. 2022, 42, 101135. [Google Scholar] [CrossRef]
- Sayago, S.; Ovando, G.; Almorox, J.; Bocco, M. Daily solar radiation from NASA-POWER Product: Assessing its accuracy considering atmospheric transparency. Int. J. Remote Sens. 2020, 41, 897–910. [Google Scholar] [CrossRef]
- Rodrigues, G.C.; Braga, R.P. Estimation of daily reference evapotranspiration from nasa power reanalysis products in a hot summer Mediterranean climate. Agronomy 2021, 11, 2077. [Google Scholar] [CrossRef]
- Aboelkhair, H.; Morsy, M.; el Afandi, G. Assessment of agroclimatology NASA POWER reanalysis datasets for temperature types and relative humidity at 2 m against ground observations over Egypt. Adv. Space Res. 2019, 64, 129–142. [Google Scholar] [CrossRef]
- Monteiro, L.A.; Sentelhas, P.C.; Pedra, G.U. Assessment of NASA/POWER satellite-based weather system for Brazilian conditions and its impact on sugarcane yield simulation. Int. J. Climatol. 2018, 38, 1560–1570. [Google Scholar] [CrossRef]
- DOSM. Key Findings: Population and Housing Census of Malaysia 2020; Putrajaya, Malaysia, 2022; Putrajaya, Malaysia. 2022. Available online: https://cloud.stats.gov.my/index.php/s/BG11nZfaBh09RaX#pdfviewer (accessed on 2 August 2022).
- NCER. NCER Priority Sectors: Green Economy. Available online: https://www.ncer.com.my/invest-in-ncer/ncer-priority-sectors/green-economy/ (accessed on 25 June 2022).
- Sluiter, R. Interpolation Methods for Climate Data; De Bilt. 2008. Available online: https://uaf-snap.org/wp-content/uploads/2020/08/Interpolation_methods_for_climate_data.pdf (accessed on 25 August 2022).
- Quansah, A.D.; Dogbey, F.; Asilevi, P.J.; Boakye, P.; Darkwah, L.; Oduro-Kwarteng, S.; Sokama-Neuyam, Y.A.; Mensah, P. Assessment of solar radiation resource from the NASA-POWER reanalysis products for tropical climates in Ghana towards clean energy application. Sci. Rep. 2022, 12, 10684. [Google Scholar] [CrossRef]
- Cronin, E.; Fernando, A.; James, J.; Kurinchi-Vendhan, R. Estimating Solar Potential Using NASA POWER Data to Inform Renewable Energy Policy for Washington, D.C. 2021. Available online: https://ntrs.nasa.gov/citations/20220001899 (accessed on 25 May 2022).
- Rodrigues, G.C.; Braga, R.P. Evaluation of NASA power reanalysis products to estimate daily weather variables in a hot summer mediterranean climate. Agronomy 2021, 11, 1207. [Google Scholar] [CrossRef]
- NASA. NASA Power Data Access. Available online: https://power.larc.nasa.gov/data-access-viewer/ (accessed on 15 August 2021).
- Adeyanju, A.A.; Manohar, K. Assessment of Solar Thermal Energy Technologies in Nigeria. In Proceedings of the IEEE Green Technologies Conference (IEEE-Green), Lafayette, LA, USA, 14–15 April 2011; pp. 1–6. [Google Scholar]
- Piñeiro, G.; Perelman, S.; Guerschman, J.P.; Paruelo, J.M. How to evaluate models: Observed vs. predicted or predicted vs. observed? Ecol. Model. 2008, 216, 316–322. [Google Scholar] [CrossRef]
- Moriasi, D. Model evaluation guidelines for sytematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Christie, D.; Neil, S.P. Measuring and observing the ocean renewable energy resource. In Comprehensive Renewable Energy; Springer: Berlin/Heidelberg, Germany, 2022; pp. 149–175. [Google Scholar]
- Noorollahi, E.; Fadai, D.; Shirazi, M.A.; Ghodsipour, S.H. Land suitability analysis for solar farms exploitation using GIS and fuzzy analytic hierarchy process (FAHP)—A case study of Iran. Energies 2016, 9, 643. [Google Scholar] [CrossRef] [Green Version]
- Hong, T.; Lee, M.; Koo, C.; Jeong, K.; Kim, J. Development of a method for estimating the rooftop solar photovoltaic (PV) potential by analyzing the available rooftop area using hillshade analysis. Appl. Energy 2017, 194, 320–332. [Google Scholar] [CrossRef]
- Grilli, G.; Balest, J.; de Meo, I.; Garegnani, G.; Paletto, A. Experts’ opinions on the effects of renewable energy development on ecosystem services in the Alpine region. J. Renew. Sustain. Energy 2016, 8, 013115. [Google Scholar] [CrossRef]
- Amajama, J.; Oku, D.E. Effect of relative humidity on photovoltaic panels’ output and solar illuminance/intensity. J. Sci. Eng. Res. 2016, 3, 126–130. [Google Scholar]
- Waterworth, D.; Armstrong, A. Southerly winds increase the electricity generated by solar photovoltaic systems. Sol. Energy 2020, 202, 123–135. [Google Scholar] [CrossRef]
- Omubo-Pepple, V.B.; Israel-Cookey, C.; Alaminokuma, G.I. Effects of temperature, solar flux and relative humidity on the efficient conversion of solar energy to electricity. Eur. J. Sci. Res. 2009, 35, 173–180. [Google Scholar]
- Giamalaki, M.; Tsoutsos, T. Sustainable siting of solar power installations in mediterranean using a GIS/AHP approach. Renew. Energy 2019, 141, 64–75. [Google Scholar] [CrossRef]
- Yousefi, H.; Hafeznia, H.; Yousefi-Sahzabi, A. Spatial Site Selection for Solar Power Plants Using a Gis-based boolean-fuzzy logic model: A case study of Markazi province, Iran. Energies 2018, 11, 1648. [Google Scholar] [CrossRef] [Green Version]
- Colak, H.E.; Memisoglu, T.; Gercek, Y. Optimal site selection for solar photovoltaic (PV) power plants using GIS and AHP: A case study of Malatya Province, Turkey. Renew. Energy 2020, 149, 565–576. [Google Scholar] [CrossRef]
- Saravanan, V.S.; Darvekar, S.K. Solar photovoltaic panels cleaning methods A review. Int. J. Pure Appl. Math. 2018, 118, 1–17. Available online: http://www.acadpubl.eu/hub/ (accessed on 28 August 2022).
- Charabi, Y.; Rhouma, M.B.H.; Gastli, A. Siting of Pv power plants on inclined terrains. Int. J. Sustain. Energy 2014, 35, 834–843. [Google Scholar] [CrossRef]
- Van de Ven, D.J.; Capellan-Peréz, I.; Arto, I.; Cazcarro, I.; de Castro, C.; Patel, P.; Gonzalez-Eguino, M. The potential land requirements and related land use change emissions of solar energy. Sci. Rep. 2021, 11, 2907. [Google Scholar] [CrossRef] [PubMed]
- Dupont, E.; Koppelaar, R.; Jeanmart, H. Global Available solar energy under physical and energy return on investment constraints. Appl. Energy 2020, 257, 113968. [Google Scholar] [CrossRef]
- Sreenath, S.; Sudhakar, K.; Yusop, A.F. Solar photovoltaics in airport: Risk assessment and mitigation strategies. Environ. Impact Assess. Rev. 2020, 84, 106418. [Google Scholar] [CrossRef]
- Paegelow, M. Multi Criteria Evaluation (MCE). In Geomatic Approaches for Modelling Land Change Scenarios; Springer: Berlin/Heidelberg, Germany, 2018; pp. 447–449. [Google Scholar] [CrossRef]
- Elboshy, B.; Alwetaishi, M.; Aly, R.M.H.; Zalhaf, A.S. A Suitability mapping for the PV solar farms in Egypt Based on GIS-AHP to Optimize Multi-Criteria Feasibility. Ain Shams Eng. J. 2022, 13, 101618. [Google Scholar] [CrossRef]
- Liu, Y.; Saitoh, S.I.; Radiarta, I.N.; Igarashi, H.; Hirawake, T. Spatiotemporal variations in suitable areas for japanese scallop aquaculture in the Dalian Coastal Area from 2003 to 2012. Aquaculture 2014, 422–423, 172–183. [Google Scholar] [CrossRef] [Green Version]
- Qureshi, M.E.; Harrison, S.R.; Wegener, M.K. Validation of multicriteria analysis models. Agric. Syst. 1999, 62, 105–116. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0308521X99000591 (accessed on 25 September 2022). [CrossRef]
- Xiaolong, D.; Li, L.; Tan, Y. Validation of spatial prediction models for landslide susceptibility mapping by considering structural similarity. ISPRS Int. J. Geoinf. 2017, 6, 103. [Google Scholar] [CrossRef] [Green Version]
- Bandira, P.N.A.; Mahamud, M.A.; Samat, N.; Tan, M.L.; Chan, N.W. Gis-Based multi-criteria evaluation for potential inland aquaculture site selection in the George Town Conurbation, Malaysia. Land 2021, 10, 1174. [Google Scholar] [CrossRef]
- Alexander, E.R. Sensitivity analysis in complex decision models. J. Am. Plan. Assoc. 1989, 55, 323–333. [Google Scholar] [CrossRef]
- Guler, D.; Charisoulis, G.; Buttenfield, B.P.; Yomralioglu, T. Suitability modeling and sensitivity analysis for biomass energy facilities in Turkey. Clean Technol. Environ. Policy 2021, 23, 2183–2199. [Google Scholar] [CrossRef]
- Saaty, T.L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 1990, 48, 9–26. [Google Scholar] [CrossRef]
- Brunelli, M. Introduction to the Analytic Hierarchy Process; SpringerBriefs: Berlin/Heidelberg, Germany, 2015; ISBN 9783319125015. [Google Scholar]
- Dolan, J.G. Shared decision-making—Transferring research into practice: The analytic hierarchy process (AHP). Patient Educ. Couns. 2008, 73, 418–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Peng, J.; Hong, H.; Shahabi, H.; Pradhan, B.; Liu, J.; Zhu, A.X.; Pei, X.; Duan, Z. Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Sci. Total Environ. 2018, 626, 1121–1135. [Google Scholar] [CrossRef]
- Duarte, Y.C.N.; Sentelhas, P.C. NASA/POWER and dailygridded weather datasets—How good they are for estimating maize yields in Brazil? Int. J. Biometeorol. 2020, 64, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Maldonado, W.; Valeriano, T.T.B.; de Souza Rolim, G. EVAPO: A smartphone application to estimate potential evapotranspiration using cloud gridded meteorological data from NASA-POWER system. Comput. Electron. Agric. 2019, 156, 187–192. [Google Scholar] [CrossRef]
- White, J.W.; Hoogenboom, G.; Stackhouse, P.W.; Hoell, J.M. Evaluation of NASA satellite- and assimilation model-derived long-term daily temperature data over the continental US. Agric. For. Meteorol. 2008, 148, 1574–1584. [Google Scholar] [CrossRef] [Green Version]
- Al-Kilani, M.R.; Rahbeh, M.; Al-Bakri, J.; Tadesse, T.; Knutson, C. Evaluation of remotely sensed precipitation estimates from the NASA POWER project for drought detection over Jordan. Earth Syst. Environ. 2021, 5, 561–573. [Google Scholar] [CrossRef]
- Marzouk, O.A. Assessment of global warming in Al Buraimi, Sultanate of Oman Based on statistical analysis of NASA POWER data over 39 years, and testing the reliability of NASA POWER against meteorological measurements. Heliyon 2021, 7, e06625. [Google Scholar] [CrossRef]
- Kapica, J.; Canales, F.A.; Jurasz, J. Global atlas of solar and wind resources temporal complementarity. Energy Convers. Manag. 2021, 246, 114692. [Google Scholar] [CrossRef]
- Negm, A.; Jabro, J.; Provenzano, G. Assessing the suitability of american national aeronautics and space administration (NASA) agro-climatology archive to predict daily meteorological variables and reference evapotranspiration in Sicily, Italy. Agric. For. Meteorol. 2017, 244–245, 111–121. [Google Scholar] [CrossRef]
- DeGolia, A.H.; Hiroyasu, E.H.T.; Anderson, S.E. Economic Losses or Environmental Gains? Framing effects on public support for environmental management. PLoS One 2019, 14, e0220320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samat, N.; Mahamud, M.A.; Tan, M.L.; Tilaki, M.J.M.; Tew, Y.L. Modelling Land Cover Changes in Peri-Urban Areas: A case study of George Town Conurbation, Malaysia. Land 2020, 9, 373. [Google Scholar] [CrossRef]
- Penang Institute. Penang Economic and Development Report. 2020. Available online: https://penanginstitute.org/wp-content/uploads/2021/03/Penang-Economic-and-Development-Report-2019-2020.pdf (accessed on 31 August 2022).
- Mosley, F.; Hassegawa, M.; Verkerk, P.J. Forest-Based Bioeconomy and Climate Change Mitigation. Available online: https://efi.int/sites/default/files/files/publication-bank/projects/Bio-economy%202.0_final_report.pdf (accessed on 14 September 2022).
- Um, D.B. Exploring the operational potential of the forest—Photovoltaic utilizing the simulated solar tree. Sci. Rep. 2022, 12, 12838. [Google Scholar] [CrossRef] [PubMed]
- Yousuf, M.U.; Shere, S.M. A novel computational methodology to estimate solar energy on building rooftops. Environ. Prog. Sustain. Energy 2020, 39, e13385. [Google Scholar] [CrossRef]
- Suparwoko; Qamar, F.A. Techno-economic analysis of rooftop solar power plant implementation and policy on mosques: An Indonesian case study. Sci. Rep. 2022, 12, 4823. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.K.; Sudhakar, K.; Baredar, P. Simulation and Performance Analysis of 110 KWp grid-connected photovoltaic system for residential building in India: A comparative analysis of various PV technology. Energy Rep. 2016, 2, 82–88. [Google Scholar] [CrossRef] [Green Version]
- USM and Ditrolic Energy Sign PPA. USM Turns to Solar-Powered Electricity for Campus Use. Available online: https://news.usm.my/index.php/english-news/7371-usm-ditrolic-energy-sign-ppa-usm-turns-to-solar-powered-electricity-for-campus-use (accessed on 20 September 2022).
- Owley, J.; Wilson Morris, A. The new agriculture: From food farms to solar farms. Columbia J. Environ. Law 2019, 44, 409–477. [Google Scholar]
- Lane, A.L.; Boork, M.; Thollander, P. Barriers, driving forces and non-energy benefits for battery storage in photovoltaic (PV) systems in modern agriculture. Energies 2019, 12, 3568. [Google Scholar] [CrossRef] [Green Version]
- Eltayeb Elhadary, Y.A.; Samat, N.; Obeng-Odoom, F. Development at the Peri-Urban Area and its impact on agricultural activities: An example from the Seberang Perai Region, Penang State, Malaysia. Agroecol. Sustain. Food Syst. 2013, 37, 834–856. [Google Scholar] [CrossRef]
- Turney, D.; Fthenakis, V. Environmental impacts from the installation and operation of large-scale solar power plants. Renew. Sustain. Energy Rev. 2011, 15, 3261–3270. [Google Scholar] [CrossRef]
- Farja, Y.; Maciejczak, M. Economic implications of agricultural land conversion to solar power production. Energies 2021, 14, 6063. [Google Scholar] [CrossRef]
- Sah, S.S.; Maulud, K.N.A.; Sharil, S.; Karim, O.A.; Nahar, N.F.A. Impact of saltwater intrusion on paddy growth in Kuala Kedah, Malaysia. J. Sustain. Sci. Manag. 2021, 16, 15–30. [Google Scholar] [CrossRef]
- De Luna, A.D.; Pascual, C.E.B.; Principe, J.A.; Ang, M.R.C.O. Cost-benefit analysis of converting agricultural land into solar farm using Rs & Gis: Case of Tarlac Province. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2021, 46, 133–140. [Google Scholar] [CrossRef]
- Vyas, K. Solar farming with agricultural land. Acta Sci. Agric. 2019, 3, 23–25. [Google Scholar] [CrossRef]
- Othman, N.F.; Mat Su, A.S.; Ya’Acob, M.E. Promising potentials of agrivoltaic systems for the development of Malaysia green economy. IOP Conf. Ser. Earth Environ. Sci. 2018, 146, 012002. [Google Scholar] [CrossRef]
Climate | Country | Method | Renewable Energy | Sources |
---|---|---|---|---|
Tropical | Malaysia | GIS-MCDM(AHP) | Solar Energy | [18,19] |
Indonesia | [20] | |||
Mauritius | [16] | |||
Brazil | [21] | |||
Papua New Guinea | Solar Energy and Biomass | [22] | ||
Thailand | Solar and Wind Energy | [5,23] | ||
Vietnam | GIS-FAHP | Solar Energy | [17] | |
China | Wind and Wave Energy | [24] | ||
Arid | Iraq | GIS-MCDM(AHP) | Solar Energy | [25,26] |
Turkey | [27,28] | |||
Kuwait | [29] | |||
Saudi Arabia | Solar Energy | [30] | ||
Wind Energy | [31] | |||
Iran | Solar Energy | [32,33] | ||
GIS Fuzzy- Boolean | Solar Energy | [34] | ||
GIS Fuzzy-WLC | [35] | |||
Spain | ELECTRE-TRI | [36] | ||
Temperate | Korea | GIS-MCDM(AHP) | Solar Energy | [37] |
Northern Ireland | [38] | |||
Estonia, Lithuania, Latvia | Wind Energy | [39] | ||
Japan | [40] | |||
Continental | Turkey | GIS-MCDM(AHP) | Solar Energy | [41] |
Azerbaijan | [42] | |||
Serbia | [43] | |||
China | Wind Energy | [44] | ||
Pakistan | GIS-FAHP | [45] |
Months | Solar Radiation (MJ/m2/Day) | Rainfall (mm/Day) | Min Temp (°C) | Max Temp (°C) | Mean Temp (°C) | Mean Wind Speed (m/s) | Relative Humidity (%) |
---|---|---|---|---|---|---|---|
January | 17.25 | 1.74 | 24.15 | 31.92 | 27.54 | 2.32 | 73.91 |
February | 18.23 | 2.62 | 24.34 | 32.44 | 27.90 | 2.09 | 76.12 |
March | 19.88 | 4.25 | 24.59 | 32.56 | 28.13 | 1.80 | 79.54 |
April | 18.05 | 6.28 | 24.85 | 32.27 | 28.19 | 1.58 | 82.69 |
May | 15.44 | 6.80 | 24.93 | 32.03 | 28.13 | 1.47 | 83.32 |
June | 15.07 | 4.99 | 24.76 | 31.98 | 27.98 | 1.48 | 82.66 |
July | 15.73 | 5.73 | 24.37 | 31.56 | 27.60 | 1.61 | 82.88 |
August | 15.31 | 7.47 | 24.24 | 31.38 | 27.41 | 1.51 | 83.83 |
September | 14.96 | 10.72 | 24.04 | 31.04 | 27.06 | 1.45 | 84.83 |
October | 14.63 | 10.79 | 24.00 | 30.95 | 26.93 | 1.47 | 85.43 |
November | 15.37 | 6.71 | 24.05 | 31.06 | 26.98 | 1.72 | 83.63 |
December | 16.10 | 2.90 | 24.20 | 31.27 | 27.22 | 2.39 | 77.34 |
Annual | 16.33 | 5.93 | 24.38 | 31.87 | 27.59 | 1.74 | 81.36 |
Data | Sources | Format/Resolution | Details |
---|---|---|---|
Land use | PLANMalaysia | Shapefile/30 m × 30 m | Land use of the George Town Conurbation for the year 2018 |
Major road or highway | Google Earth Pro | Shapefile/30 m × 30 m | Digitized from Google Earth Pro year 2018 |
Major cities or towns | PLANMalaysia | Shapefile/30 m × 30 m | Major cities or towns in the George Town Conurbation year 2018 |
Digital Elevation Model (DEM) | USGS | Raster/30 m × 30 m | Elevation information of George Town Conurbation year 2018 |
Slope | USGS | Raster/30 m × 30 m | Calculated from DEM |
Criteria | Sub- Criteria | Source | Highly Suitable | Suitable | Moderately Suitable | Marginally Suitable | Excluded |
---|---|---|---|---|---|---|---|
Climate | GHI (kWh/m2/day) | NASA Power | >5.0 | 4.5–5.0 | 4.0–4.5 | 3.5–4.0 | <3.5 |
Temperature (°C) | NASA Power | 24.0–25.0 | 25.1–26.0 | 26.1–27.0 | 27.1–28.0 | >28.1 | |
Relative Humidity (%) | NASA Power | 75–76 | 77–78 | 78–79 | 79–80 | >80 | |
Cloud Amount (%) | NASA Power | 70–72 | 73–75 | 75–76 | 78–80 | >80 | |
Rainfall (mm/day) | NASA Power | 3.1–4.0 | 4.1–5.0 | 5.1–6.0 | 6.1–7.0 | >7.0 | |
Wind Speed (m/s) | NASA Power | 2.5–3.0 | 2.0–2.4 | 1.5–1.9 | 1.0–1.4 | <1.0 and >3.0 | |
Sunshine Hours (Hours) | NASA Power | >11.1 | 9.0–11.0 | 8.0–8.9 | 7.0–7.9 | <7.0 | |
Orography | Elevation (m) | USGS | 801–1000 | 601–800 | 401–600 | 201–400 | <200 and >1000 |
Slope (%) | USGS | 9.1–10.0 | 7.1–9.0 | 5.1–7.0 | 2.1–5.0 | <2.0 and >10 | |
Economical | Distance to Urban (km) | Google Earth Pro | 5–10 | 10.1–15 | 15.1–20 | 20.1–25 | >25 |
Distance to Road (km) | Google Earth Pro | 5–10 | 10.1–15 | 15.1–20 | 20.1–25 | >25 | |
Distance to Power Line (km) | Google Earth Pro | 5–10 | 10.1–15 | 15.1–20 | 20.1–25 | >25 | |
Environmental | Land Use | PLAN Malaysia and NCIA | Vacant Land, Built-up Area | Agriculture | - | - | Forest, Water Bodies |
Numerical Rating | Relative Importance Scale | Reciprocal |
---|---|---|
1 | Equally Importance | 1 |
2 | Equally to moderately importance | 1/2 |
3 | Moderately importance | 1/3 |
4 | Moderately to strongly importance | 1/4 |
5 | Strongly Importance | 1/5 |
6 | Strongly to very strongly importance | 1/6 |
7 | Very strong importance | 1/7 |
8 | Very strong to extremely importance | 1/8 |
9 | Extreme importance | 1/9 |
Criteria | DM1 | DM2 | DM3 | Average | Rank |
---|---|---|---|---|---|
Social Impact Scenario | |||||
Climate | 0.20 | 0.20 | 0.15 | 0.20 | 3 |
Orography | 0.10 | 0.10 | 0.05 | 0.10 | 4 |
Economic | 0.40 | 0.50 | 0.45 | 0.40 | 1 |
Land use | 0.40 | 0.20 | 0.35 | 0.30 | 2 |
Sum | 1.0 | 1.0 | 1.0 | 1.0 | |
CR | 0.05 | 0.09 | 0.15 | 0.09 | |
Economic Scenario | |||||
Climate | 0.27 | 0.53 | 0.33 | 0.39 | 1 |
Orography | 0.35 | 0.20 | 0.41 | 0.32 | 2 |
Economic | 0.19 | 0.11 | 0.14 | 0.15 | 3 |
Land use | 0.19 | 0.15 | 0.12 | 0.14 | 4 |
Sum | 1.0 | 1.0 | 1.0 | 1.0 | |
CR | 0.11 | 0.14 | 0.09 | 0.07 | |
Environmentalist Scenario | |||||
Climate | 0.31 | 0.15 | 0.31 | 0.23 | 2 |
Orography | 0.09 | 0.05 | 0.06 | 0.07 | 4 |
Economic | 0.17 | 0.10 | 0.23 | 0.16 | 3 |
Land use | 0.43 | 0.70 | 0.40 | 0.54 | 1 |
Sum | 1.0 | 1.0 | 1.0 | 1.0 | |
CR | 0.09 | 0.11 | 0.13 | 0.08 |
Parameters/ Statistical Index | Average value | R2 | RMSE | NRMSE | MBE | NMBE | |
---|---|---|---|---|---|---|---|
NASA | Ground Data | ||||||
Max Temperature | 29.1 | 31.6 | 0.57 | 2.77 | 0.087 | −2.55 | −8.09 |
Min Temperature | 27.1 | 24.6 | 0.45 | 2.77 | 0.112 | 2.53 | 10.27 |
Mean Temperature | 28.1 | 27.7 | 0.58 | 0.94 | 0.034 | 0.38 | 1.36 |
RH | 78.8 | 80.1 | 0.24 | 5.88 | 0.073 | −1.29 | −1.61 |
Solar | 5.05 | 4.90 | 0.55 | 3.05 | 0.782 | 1.92 | 7.21 |
Wind Speed Mean | 3.1 | 1.9 | 0.12 | 1.65 | 0.889 | 1.22 | 65.73 |
Rainfall | 6.1 | 3.2 | 0.27 | 16.83 | 5.191 | 2.89 | 89.42 |
Criteria | GHI | Temperature | Relative Humidity | Cloud Amount | Rainfall | Wind Speed | Sunshine Hours | Weight |
---|---|---|---|---|---|---|---|---|
Climate | ||||||||
Global Horizontal Irradiation | 1 | 0.30 | ||||||
Temperature | 0.25 | 1 | 0.15 | |||||
Relative Humidity | 0.25 | 5 | 1 | 0.20 | ||||
Cloud Amount | 0.25 | 0.5 | 0.33 | 1 | 0.05 | |||
Rainfall | 0.25 | 3 | 0.25 | 2 | 1 | 0.15 | ||
Wind Speed | 0.25 | 2 | 1 | 2 | 0.33 | 1 | 0.10 | |
Sunshine Hours | 0.25 | 4 | 0.2 | 0.33 | 2 | 2 | 1 | 0.05 |
Consistency Ratio | 0.1202 | |||||||
Orography | Elevation | Slope | Weight | |||||
Elevation | 1 | 0.80 | ||||||
Slope | 0.25 | 1 | 0.20 | |||||
Consistency Ratio | 0.0000 | |||||||
Economic | Distance to Urban Area | Distance to Road | Distance to Power Grid | Weight | ||||
Distance to Urban Area | 1 | 0.2 | ||||||
Distance to Road | 4 | 1 | 0.6 | |||||
Distance to Power Grid | 3 | 0.33 | 1 | 0.2 | ||||
Consistency Ratio | 0.0872 | |||||||
Overall | Climate | Orography | Economical | Land Use | Weight | |||
Climate | 1 | 0.40 | ||||||
Orography | 0.50 | 1 | 0.15 | |||||
Economic | 0.50 | 0.5 | 1 | 0.25 | ||||
Land Use | 0.25 | 2 | 2 | 1 | 0.20 | |||
Consistency Ratio | 0.0745 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bandira, P.N.A.; Tan, M.L.; Teh, S.Y.; Samat, N.; Shaharudin, S.M.; Mahamud, M.A.; Tangang, F.; Juneng, L.; Chung, J.X.; Samsudin, M.S. Optimal Solar Farm Site Selection in the George Town Conurbation Using GIS-Based Multi-Criteria Decision Making (MCDM) and NASA POWER Data. Atmosphere 2022, 13, 2105. https://doi.org/10.3390/atmos13122105
Bandira PNA, Tan ML, Teh SY, Samat N, Shaharudin SM, Mahamud MA, Tangang F, Juneng L, Chung JX, Samsudin MS. Optimal Solar Farm Site Selection in the George Town Conurbation Using GIS-Based Multi-Criteria Decision Making (MCDM) and NASA POWER Data. Atmosphere. 2022; 13(12):2105. https://doi.org/10.3390/atmos13122105
Chicago/Turabian StyleBandira, Puteri Nur Atiqah, Mou Leong Tan, Su Yean Teh, Narimah Samat, Shazlyn Milleana Shaharudin, Mohd Amirul Mahamud, Fredolin Tangang, Liew Juneng, Jing Xiang Chung, and Mohd Saiful Samsudin. 2022. "Optimal Solar Farm Site Selection in the George Town Conurbation Using GIS-Based Multi-Criteria Decision Making (MCDM) and NASA POWER Data" Atmosphere 13, no. 12: 2105. https://doi.org/10.3390/atmos13122105
APA StyleBandira, P. N. A., Tan, M. L., Teh, S. Y., Samat, N., Shaharudin, S. M., Mahamud, M. A., Tangang, F., Juneng, L., Chung, J. X., & Samsudin, M. S. (2022). Optimal Solar Farm Site Selection in the George Town Conurbation Using GIS-Based Multi-Criteria Decision Making (MCDM) and NASA POWER Data. Atmosphere, 13(12), 2105. https://doi.org/10.3390/atmos13122105