Research Progress of Forest Fires Spread Trend Forecasting in Heilongjiang Province
Abstract
:1. Introduction
1.1. Basic Concepts of Forest Fires
1.2. The Geographical Overview of Heilongjiang Province
1.3. Overview of Forest Fires Prediction and Forecasting
1.4. Latest Research Progress of Global Forest Fires Forecasting
1.5. Objective and Contribution
2. Materials and Methods
3. Forest Fires Spread Forecast Method
3.1. Wang Zhengfei Empirical Model (WZF Model)
3.2. Rothermel Mathematical Physical Model
3.3. Improved Ellipse Math Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Yin, J. Forest Fire Forecast; Chinese People’s Armed Police Force Police Academy: Langfang, China, 2015. [Google Scholar]
- He, J.; Zhang, G.; Wang, G. The regularity of forest fires occurrence and the establishment of forest fires weather grade model in the Lesser Khinghan Mountains. Heinglongjiang Meteorol. 2011, 28, 2. [Google Scholar]
- Yan, J.; Liu, S. Agroforestry Meteorology; China Meteorological Press: Beijing, China, 2018. [Google Scholar]
- Song, Z. Forest Fire Principle and Forecast; China Meteorological Press: Beijing, China, 1991. [Google Scholar]
- Zhou, W.; Wu, Z.; Chen, Z. Climate and agriculture in Guzhang; China Meteorological Press: Beijing, China, 2019. [Google Scholar]
- Yang, W. Heilongjiang Province Meteorological Disaster Prevention Technical Manual; China Meteorological Press: Beijing, China, 2017. [Google Scholar]
- Zhu, Z.; Zhao, P.; Wang, Q.; Deng, X.; Gao, Z. Research progress of forest fire prediction model. World For. Res. 2022, 35, 6. [Google Scholar] [CrossRef]
- Chen, W. Satellite Meteorology, 3rd ed.; China Meteorological Press: Beijing, China, 2017. [Google Scholar]
- Shu, L.; Wang, M.; Tian, X.; Zhang, X.; Dai, X. Calculation and expression of characteristic parameters of forest burning fire behavior. For. Sci. 2004, 40, 5. [Google Scholar]
- Tang, X.; Meng, X.; Yi, H. Research progress on forest fire spread model and spread simulation. J. Beijing For. Univ. 2002, 24, 5. [Google Scholar]
- Bai, S.; Zhang, X. A Review of Forest Fire Prediction and Forecasting Research. For. Fire Prev. 2008, 2, 4. [Google Scholar]
- Wen, G.; Liu, Y. Mathematical model of forest fire spread and its application. J. Northeast. For. Univ. 1994, 22, 6. [Google Scholar]
- Xie, Y.; Peng, M. Forest Fire Forecasting Using Ensemble Learning Approaches. Neural Comput. Appl. 2018, 31, 4541–4550. [Google Scholar] [CrossRef]
- Stankevich, T.S. Forecasting the Spatial Behavior of a Forest Fire at Uncertainty and Instability of the Process. Lesn. Zhurnal 2021, 1, 20–34. [Google Scholar] [CrossRef]
- Yeom, C.; Won, M.; Lee, S.; Yoon, S.; Park, H. A Study on Estimation of Forest Fire Surface Fuel Moisture Using Electrical Resistance. J. Korean Soc. Hazard Mitig. 2018, 18, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Moon, K.; Duff, T.J.; Tolhurst, K.G. Sub-canopy Forest Winds: Understanding Wind Profiles for Fire Behaviour Simulation. Fire Saf. J. 2019, 105, 320–329. [Google Scholar] [CrossRef]
- Gruszczynska, M.; Mandal, A.; Nykiel, G.; Strzyzewski, T.; Wronska, W.; Jaczewski, A.; Figurski, M. Evaluation of the reliability of the high-resolution WRF fire danger forecasts in Poland. In Proceedings of the EGU General Assembly 2021, Online, 19–30 April 2021. [Google Scholar] [CrossRef]
- Baranovskiy, N.V. Predicting Forest Fire Numbers Using Deterministic-Probabilistic Approach. In Predicting, Monitoring, and Assessing Forest Fire Dangers and Risks; IGI Global: Hershey, PA, USA, 2020. [Google Scholar]
- Wang, Z. Mountain fire initial spread speed measurement algorithm. Mt. Res. 1983, 2, 44–53. [Google Scholar]
- Wang, Z. Universal Forest Fire Hazard System. J. Nat. Disasters 1992, 3, 39–44. [Google Scholar]
- Mao, X.; Xu, W. Research on the Calculation Method of Forest Fire Spreading Speed. J. Meteorol. Environ. 1991, 1, 9–13. [Google Scholar]
- Mao, X. Effects of wind and terrain on the speed of forest fire spread. J. Appl. Meteorol. Sci. 1993, 4, 100–104. [Google Scholar]
- Non-Linear Least Squares. Available online: https://baike.baidu.com/item/%E9%9D%9E%E7%BA%BF%E6%80%A7%E6%9C%80%E5%B0%8F%E4%BA%8C%E4%B9%98%E6%B3%95/2697652 (accessed on 4 November 2022).
- Chen, C.; Li, J.; Tang, L.; Feng, X. Research progress on computer simulation and visualization of forest fire spread. For. Sci. 2005, 41, 8. [Google Scholar]
- Wang, X.; Zhang, J.; Jin, S. Research progress of forest fire spread simulation. J. Cent. South Univ. For. Technol. 2013, 33, 10. [Google Scholar]
- Zhao, P.; Shu, L.; Zhou, R.; Zhao, F.; Wang, M. Research progress of forest fire behavior spread model. World For. Res. 2017, 30, 5. [Google Scholar]
- Ruan, J.; Li, J. Research progress of forest fire-wind two-way coupling simulation in forest fire spread. Mod. Comput. 2021, 6, 37–42. [Google Scholar]
- Zhou, G.; Wu, Q.; Chen, A. Research on cellular automata algorithm for forest fire spread simulation. J. Instrum. 2017, 38, 7. [Google Scholar]
- Yang, S.; Li, N. Research on the Progress of Forest Fire Spread Model. Gansu Technol. 2021, 3, 45–47. [Google Scholar]
- Zhang, X.; Liu, P.; Wang, X. Improvement of Wang Zhengfei’s forest fire spread model. Shandong For. Technol. 2020, 50, 7. [Google Scholar]
- Li, D.; Jin, S. Errors in Determination of Forest Fire Spread Rate by Visible Light Image Method. J. Cent. South Univ. For. Technol. 2014, 34, 7. [Google Scholar]
- Zhu, L. Comparison of forest fire simulation based on Wang Zhengfei model and Rothermel model. Agric. Technol. Inf. 2019, 3, 85–88. [Google Scholar]
- Zheng, H.; Hu, H. Study on Types of Combustibles in Eastern Northeast Mountainous Areas. For. Fire Prev. 1990, 4, 10–13. [Google Scholar]
- Hu, H. Determination and analysis of combustible physical and chemical properties of major forests in Daxing’anling. For. Fire Prev. 1995, 1, 27–31. [Google Scholar]
- Shan, Y.; Li, H.; Qi, Q.I. Experimental Analysis on Combustibility and Physicochemical Properties of Main Tree Species in Daxing’an Mountains, Heilongjiang. Fire Sci. 2003, 12, 5. [Google Scholar]
- Liang, H.; Guo, F.; Wang, W.; Su, Z.; Zhao, J.; Lin, Y. Natural influencing factors and influence of forest fires in Yichun area of Xiaoxing’anling. J. Northeast. For. Univ. 2015, 43, 29–35. [Google Scholar]
- Lawson, B.D.; Stocks, B.J.; Alexander, M.E.; Van Wagner, C.E. A System for Predicting Fire Behavior in Canadian Forests. In Proceedings of the 8th Conference on Fire and Forest Meteorology, Detroit, Michigan, 29 April–2 May 1985. [Google Scholar]
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; USDA: Ogden, UT, USA, 1972; Volume 115, 40p. [Google Scholar]
- Weber, R.O.; Tang, S. Mathematical Models for Wildfire Spread. Mech. Pract. 1992, 14, 1–12. [Google Scholar]
- Albini, F.A. Estimating Wind Speeds for Predicting Wildland Fire Behavior; Intermountain Forest and Range Experiment Station, Forest Service, US Department of Agriculture: Ogden, UT, USA, 1979. [CrossRef]
- Lv, F.; Zhou, X.; Ding, J.; Shan, Y.; Yin, S.; Liu, H.; Gao, B.; Han, X. Influencing factors of potential surface fire behavior characteristics of larch plantation in Xing’an. J. Northeast. For. Univ. 2021, 49, 8. [Google Scholar]
- Zong, X.; Tian, X. Effects of combustibles treatment on the behavior of major forest fires in the Greater Khingan Mountainsx. For. Sci. 2021, 57, 11. [Google Scholar]
- Wang, H.; Jing, W. Computer Simulation of Forest Surface Fire Spread. J. Univ. Sci. Technol. China 1994, 24, 7. [Google Scholar]
- Zhu, Q.; Zhang, Z. Spatial Simulation of Forest Fire Spread Supported by GIS. Environ. Remote Sens. 1995, 2, 81–88. [Google Scholar]
- David, R.; Gregory, S. A qualitative comparison of fire spread models incorporating wind and slope effects. For. Sci. 1997, 43, 170–180. [Google Scholar]
- Zhang, Y.; Luo, C. Computer Simulation of Forest Fire Spread Based on GIS Model. For. Eng. 2013, 3, 13–17. [Google Scholar]
- Tang, X.; Meng, X.; Ge, H. Research and realization of forest fire spread simulation based on grid structure. J. Beijing For. Univ. 2003, 25, 5. [Google Scholar]
- Huang, Z. Prediction of forest fire behavior based on GIS and RS. J. Northwest For. Univ. 2006, 21, 94–97. [Google Scholar]
- Mao, X.; Fan, W.; Li, M.; Jin, S. Computer Simulation of Forest Fire Spread Based on GIS Model. J. Northeast. For. Univ. 2008, 9, 38–41. [Google Scholar]
Wind Speed (m/s) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Wind Speed Adjustment Factor (1983) | 1.2 | 1.4 | 1.7 | 2 | 2.4 | 2.9 | 3.3 | 4.1 | 5 | 6 | 7.1 | 8.5 |
Wind Speed Adjustment Factor (1992) | 1.2 | 1.4 | 1.7 | 2 | 2.4 | 2.9 | 3.3 | 4.1 | 5.1 1 | 6 | 7.3 1 | 8.5 |
Type of Combustible | Tile Needles | Dry Branches and Fallen Leaves | Thatch Weed | Sedge Birch | Pasture Grassland | Pine |
---|---|---|---|---|---|---|
Combustible Adjustment Factor | 0.8 | 1.2 | 1.6 | 1.8 | 2 | 1 |
Test Model Fire Spread Speed (m/min) | Uphill | Downhill | Left Flat Slope | Right Flat Slope | Wind | |
---|---|---|---|---|---|---|
Test 1 = 0.84 m/min = 1.3 V = 12 m/s = 15° = 292.5° | Model 1 | 5.15 (0.103) | 0.23 (0.438) | 7.92 (0.16) | 0.16 (0.231) | 11.66 (0.52) |
Model 1-Reproduction | 5.13 (0.098) | 0.23 (0.438) | 7.88 (0.154) | 0.15 (0.154) | 11.61 (0.51) | |
Model 2 | 5.05 (0.081) | 0.22 (0.375) | 7.96 (0.165) | 0.14 (0.077) | 11.76 (0.53) | |
Model 3-Reproduction | 5.14 (0.1) | 0.67 (3.188) | 7.93 (0.161) | 0.15 (0.154) | 19.26 (1.51) | |
Measured Value | 4.67 | 0.16 | 6.83 | 0.13 | 7.67 | |
Test 2 = 0.54 m/min = 1.1 V = 4 m/s = 10° = 315° | Model 1 | 1.53 (0.33) | 0.23 (0.233) | 0.98 (0.633) | 0.36 (0.027) | 2.47 (0.123) |
Model 1-Reproduction | 1.53 (0.33) | 0.23 (0.233) | 0.98 (0.633) | 0.36 (0.027) | 1.62 (0.264) | |
Model 2 | 1.5 (0.3) | 0.22 (0.267) | 0.96 (0.6) | 0.34 (0.081) | 1.59 (0.277) | |
Model 3-Reproduction | 1.37 (0.191) | 0.45 (0.5) | 0.99 (0.65) | 0.36 (0.027) | 1.68 (0.236) | |
Measured Value | 1.15 | 0.3 | 0.6 | 0.37 | 2.2 | |
Test 3 = 0.36 m/min = 1.1 V = 1 m/s = 15° = 315° | Model 1 | 0.93 (0.094) | 0.17 (0.32) | 0.45 (0.063) | 0.35 (0.207) | 0.76 (0.216) |
Model 1-Reproduction | 0.93 (0.094) | 0.17 (0.32) | 0.45 (0.063) | 0.35 (0.207) | 0.76 (0.216) | |
Model 2 | 0.9 (0.059) | 0.16 (0.36) | 0.44 (0.083) | 0.34 (0.172) | 0.74 (0.237) | |
Model 3 | 0.85 (0) | 0.22 (0.12) | 0.45 (0.063) | 0.34 (0.172) | 0.9 (0.072) | |
Model 3-Reproduction | 0.93 (0.94) | 0.48 (0.92) | 0.45 (0.063) | 0.35 (0.207) | 0.98 (0.01) | |
Measured Value | 0.85 | 0.25 | 0.48 | 0.29 | 0.97 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wang, C.; Zhao, G.; Ding, H.; Yu, M. Research Progress of Forest Fires Spread Trend Forecasting in Heilongjiang Province. Atmosphere 2022, 13, 2110. https://doi.org/10.3390/atmos13122110
Wang X, Wang C, Zhao G, Ding H, Yu M. Research Progress of Forest Fires Spread Trend Forecasting in Heilongjiang Province. Atmosphere. 2022; 13(12):2110. https://doi.org/10.3390/atmos13122110
Chicago/Turabian StyleWang, Xiaoxue, Chengwei Wang, Guangna Zhao, Hairu Ding, and Min Yu. 2022. "Research Progress of Forest Fires Spread Trend Forecasting in Heilongjiang Province" Atmosphere 13, no. 12: 2110. https://doi.org/10.3390/atmos13122110
APA StyleWang, X., Wang, C., Zhao, G., Ding, H., & Yu, M. (2022). Research Progress of Forest Fires Spread Trend Forecasting in Heilongjiang Province. Atmosphere, 13(12), 2110. https://doi.org/10.3390/atmos13122110