Spatial and Temporal Variations of Polychlorinated Biphenyls and Organochlorine Pesticides in Snow in Eastern Siberia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Location
2.2. Snow Sampling
2.3. Sample Pretreatment and Analysis
2.4. Quality Control and Quality Assurance (QA/QC)
2.5. Data Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Characteristics of Snow Cover at the Time of Sampling in 2021
3.2. Organochlorins Levels in Snow from the Southern Part of Irkutsk Region and Its Comparison with Data from Other Locations
3.3. Temporal Trend of PCBs and OCPs in Irkutsk Region, Eastern Siberia in 1994–2021
3.3.1. PCBs
3.3.2. PCB-11
3.3.3. HCB
3.3.4. DDTs and HCHs
3.4. The Relationship of Suspended Particulate Matter and Organochlorines Levels in Snow
3.5. The Deposition Fluxes of Organochlorines
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stockholm Convention on Persistent Organic Pollutants. In Text and Annexes; revised in 2019; United Nations Environmental Programme: Stockholm, Sweden, 2011; Volume 53, Available online: http://www.pops.int/TheConvention/Overview/TextoftheConvention/tabid/2232/Default.aspx (accessed on 12 September 2022).
- Persistent Organic Pollutants; Arctic Assessment Report; Arctic Monitoring and Assessment Programme (AMAP): Oslo, Norway, 1998; Chapter 6; pp. 183–371.
- Wania, F.; Mackay, D. Tracking the distribution of persistent organic pollutants. Environ. Sci. Toxicol. 1996, 30, 390A–396A. [Google Scholar]
- Herbert, B.M.J.; Villa, S.; Halsall, C.J. Chemical interactions with snow: Understanding the behavior and fate of semi-volatile organic compounds in snow. Ecotoxicol. Environ. Saf. 2006, 63, 3–16. [Google Scholar] [CrossRef]
- Alekseev, V.P. The snow cover as indicator of cumulative pollution of lands. Led i Sneg 2013, 1, 127–140. [Google Scholar] [CrossRef]
- Kutuzov, S.; Legrand, M.; Preunkert, S.; Ginot, P.; Mikhalenko, V.; Shukurov, K.; Poliukhov, A.; Toropov, P. The Elbrus (Caucasus, Russia) ice core record. Part 2: History of desert dust deposition. Atmos. Chem. Phys. 2019, 19, 14133–14148. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.-H.; Choi, S.-D.; Park, H.; Baek, S.-Y.; Hong, S.; Chang, Y.-S. Atmospheric deposition of persistent organic pollutants to the East Rongbuk Glacier in the Himalayas. Sci. Total Environ. 2009, 408, 57–63. [Google Scholar] [CrossRef]
- Wania, F.; Hoff, J.T.; Jia, C.Q.; Mackay, D. The effects of snow and ice on the environmental behavior of hydrophobic organic chemicals. Environ. Pollut. 1998, 102, 25–41. [Google Scholar] [CrossRef]
- Lei, Y.D.; Wania, F. Is rain or snow a more efficient scavenger of organic chemicals? Atmos. Environ. 2004, 38, 3557–3571. [Google Scholar] [CrossRef]
- Franz, T.P.; Eisenreich, S.J. Snow scavenging of polychlorinated biphenyls and polycyclic aromatic hydrocarbons in Minnesota. Environ. Sci. Technol. 1998, 32, 1771–1778. [Google Scholar] [CrossRef]
- Grannas, A.M.; Bogdal, C.; Hageman, K.J.; Halsall, C.; Harner, T.; Hung, H.; Kallenborn, R.; Klán, P.; Klánová, J.; Macdonald, R.W.; et al. The role of the global cryosphere in the fate of organic contaminants. Atmos. Chem. Phys. 2013, 13, 3271–3305. [Google Scholar] [CrossRef] [Green Version]
- Stocker, J.; Scheringer, M.; Wegmann, F.; Hungerbuhler, K. Modeling the effect of snow and ice on the global environmental fate and long-range transport potential of semivolatile organic compounds. Environ. Sci. Technol. 2007, 41, 6192–6198. [Google Scholar] [CrossRef] [Green Version]
- Meyer, T.; Wania, F. Organic contaminant amplification during snowmelt. Water Res. 2008, 42, 1847–1865. [Google Scholar] [CrossRef]
- Cousins, I.T.; Beck, A.J.; Jones, K.C. A review of the processes involved in the exchange of semi-volatile organic compounds (SVOC) across the air-soil interface. Sci. Total Environ. 1999, 228, 5–24. [Google Scholar] [CrossRef]
- Mamontov, A.A.; Mamontova, E.A.; Tarasova, E.N.; McLachlan, M.S. Tracing the Sources of PCDD/Fs and PCBs to Lake Baikal. Environ. Sci. Technol. 2000, 34, 741–747. [Google Scholar] [CrossRef]
- Mamontova, E.A.; Tarasova, E.N.; Mamontov, A.A. Concentration of persistent organic pollutants in soil, snow water, and vegetation in southern Baikal region. Meteorol. Hydrol. 2019, 2, 86–98. (In Russian) [Google Scholar]
- Mamontova, E.A.; Tarasova, E.N.; Mamontov, A.A.; Kuzmin, M.I.; McLachlan, M.S.; Khomutova, M.I. The influence of soil contamination on the concentrations of PCBs in milk in Siberia. Chemosphere 2007, 67, S71–S78. [Google Scholar] [CrossRef]
- Mamontova, E.A.; Mamontov, A.A.; Tarasova, E.N. Ecological and hygienic assessment of the consequences of the pollution with persistent organic compounds of an industrial town (by the example of Usol’e-Sibirskoe): I. Atmospheric air, snow, and soil. Russ. J. Gen. Chem. 2016, 86, 2987–2996. [Google Scholar] [CrossRef]
- Bobovnokova, T.I.; Dibtseva, A.V.; Malakhov, A.G.; Siverina, A.A. Effects of long-range atmospheric transport of organochlorine pesticides and polychlorobiphenyls. Hig. Sanit. 1988, 7, 4–8. (In Russian) [Google Scholar]
- Mamontova, E.A.; Mamontov, A.A.; Matorova, N.I.; Tarasova, E.N.; Chuvashev, U.A. PCB in snow of the Baikal region. Organohalogen Compd. 1997, 32, 72–75. [Google Scholar]
- Mamontova, E.A.; Mamontov, A.A.; Tarasova, E.N.; Chuvashov, Y.A. The pollution with PCB of snow cover in Irkutsk Region. Geogr. Nat. Resour. 2001, 4, 133–136. (In Russian) [Google Scholar]
- Mamontov, A.A.; Mamontova, E.A.; Tarasova, E.N.; Kuzmin, M.I.; McLachlan, M.S. Persistent organic pollutants in soil and snow from the Lake Baikal Region. Organohalogen Compd. 2004, 66, 1327–1332. [Google Scholar]
- Mamontova, E.A.; Tarasova, E.N.; Mamontov, A.A. (Vinogradov Institute of Geochemistry SB RAS, Irkutsk, Russia). PCBs and OCPs in Snow from the Town of Usol’e-Sibirskoe to the Settlement of Listvyanka in the Southern Part of Irkutsk Region in 2009. 2009; unpublished work. [Google Scholar]
- Mamontova, E.A.; Tarasova, E.N.; Mamontov, A.A. The Variation of PCBs and OCPs in Air, Precipitation, and Soil at Urban, Suburban and Rural Stations in the Southern Part of Irkutsk Region in 2010–2011; Vinogradov Institute of Geochemistry SB RAS: Irkutsk, Russia, 2022; manuscript in preparation. [Google Scholar]
- Atlas of Irkutsk Region; Publishing House of The Main Directorate of Geodesy and Cartography; Ministry of Geology and Subsoil Protection of the USSR: Moscow, Russia, 1962; 182p.
- Atlas of Lake Baikal; Publishing House of the Federal Service of Geodesy and Cartography of Russia: Moscow, Russia, 1993; 160p. (In Russian)
- Kostrova, S.S.; Meyer, H.; Fernandoy, F.; Werner, M.; Tarasov, P.E. Moisture origin and stable isotope characteristics of precipitation in southeast Siberia. Hydrol. Process. 2020, 34, 51–67. [Google Scholar] [CrossRef] [Green Version]
- Ippolitova, N.A.; Kovalenko, S.N.; Orel, G.F. Geography of Irkutsk Region; Publishing House Sochava Institute of Geography, Siberian Branch of the Russian Academy of Science: Irkutsk, Russia, 2013; 233p. (In Russian) [Google Scholar]
- Vinokurov, M.A.; Sukhodolov, A.P. Towns of Irkutsk Region; Publishing House BGUEP: Irkutsk, Russia, 2010; 344p. [Google Scholar]
- Schamanskiy, V.F. Usol’e-Sibirskoe; Publishing House of Eastern Siberia: Irkutsk, Russia, 1994; 219p. [Google Scholar]
- Koval, P.V.; Rusch, E.A.; Koroleva, G.P.; Udodov, I.N.; Andrulaytis, L.D. Assessment of the impact of a source of mercury pollution on the components of the natural environment of the Angara region. Ecol. Vestn. Sev. Kavk. 2006, 2, 41–59. (In Russian) [Google Scholar]
- The Order of October 29, 2020 No 2819-r Action Plan (“Roadmap”) for the Prevention and Elimination of Environmental Pollution in the Territory of the Urban District of Usol’e-Sibirskoe, Irkutsk Region, as a Result of Economic Activities Related to the Production of Chemical Products. Available online: http://static.government.ru/media/files/lZmADFuqAZOYIxXJJGTd0ddGGAoL4EOy.pdf (accessed on 1 November 2022).
- What’s at Khimprom in Usol’e-Sibirskoe? Available online: https://vk.com/usolesibir (accessed on 12 October 2022).
- Koroleva, G.P.; Belozerova, O.I.; Kholodova, M.S. Forms of finding ecotoxicant metals in the dust component of the snow cover (southern Baikal region). Vestn. Irkutsk. Gosudartvennogo Univ. 2013, 73, 73–80. (In Russian) [Google Scholar]
- Mamontova, E.A.; Tarasova, E.N.; Mamontov, A.A.; Mamontov, A.M. Freshwater seal as a source of direct and indirect increased human exposure to persistent organic pollutants in a background area. Sci. Total Environ. 2020, 715, 136922. [Google Scholar] [CrossRef]
- Tarasova, E.N.; Mamontova, E.A.; Mamontov, A.A. Organic Matter and Biogenic Elements in Snow Cover the Lake Baikal Region. In Proceedings of the Problems of Ecological Geochemistry, Minsk, Belarus, 25–26 June 2008. (In Russian). [Google Scholar]
- Revich, B.A.; Saet, Y.E.; Smirnova, R.S. Methodical Recommendations for Assessing the Degree of Pollution of Atmospheric Air in Populated Areas with Metals by Their Content in the Snow Cover and Soil; IMGRE: Moscow, Russia, 1990; 9p, Available online: https://meganorm.ru/Index2/1/4293736/4293736062.htm (accessed on 21 November 2022).
- Bulygina, O.N.; Rasuvaev, V.N.; Alexandrova, T.M. The Description of the Database of Daily Air Temperature and Precipitation at Meteorological Stations in Russia and the Former USSA (TTTR). Certificate of State Registration of the Database No 2014620942. Available online: http://meteo.ru/data/162-temperature-precipitation#oписание-массива-данных (accessed on 12 January 2022). (In Russian).
- Bulygina, O.N.; Razyvaev, V.N.; Korshunova, N.N.; Schvets, N.V. The Description of the Database of Month Sums of Precipitations at Stations in Russia. Certificate of State Registration of the Database No 2015620394. Available online: http://meteo.ru/data/158-total-precipitation (accessed on 16 September 2022). (In Russian).
- Carrera, G.; Fernandez, P.; Vilanova, R.M.; Grimalt, J.O. Persistent organic pollutants in snow from European high mountain areas. Atmos. Environ. 2001, 35, 245–254. [Google Scholar] [CrossRef]
- Finizio, A.; Villa, S.; Raffaele, F.; Vighi, M. Variation of POP concentrations in fresh-fallen snow and air on an Alpine glacier (Monte Rosa). Ecotoxicol. Environ. Saf. 2006, 63, 25–32. [Google Scholar] [CrossRef]
- Arellano, L.; Fernandez, P.; Tatosova, J.; Stuchlik, E.; Grimalt, J.O. Long-Range Transported Atmospheric Pollutants in Snowpacks Accumulated at Different Altitudes in the Tatra Mountains (Slovakia). Environ. Sci. Technol. 2011, 45, 9268–9275. [Google Scholar] [CrossRef]
- Arellano, L.; Grimalt, J.O.; Fernández, P.; Lopez, J.F.; Nickus, U.; Thies, H. Persistent organic pollutant accumulation in seasonal snow along an altitudinal gradient in the Tyrolean Alps. Environ. Sci. Pollut. Res. 2014, 21, 12638–12650. [Google Scholar] [CrossRef]
- Lebedev, A.T.; Polyakova, O.V.; Mazur, D.M.; Bol’shov, M.A.; Seregina, I.F. Estimation of Contamination of Atmosphere of Moscow in Winter. J. Analyt. Chem. 2012, 67, 1039–1049. [Google Scholar] [CrossRef]
- Amirgaliyev, N.A.; Medeu, A.R.; Opp, C.; Madibekov, A.; Kulbekova, R.; Ismukhanova, L.; Zhadi, A. Polychlorinated Biphenyls in the Snow Cover of South-Eastern Kazakhstan. Appl. Sci. 2022, 12, 8660. [Google Scholar] [CrossRef]
- Blais, J.M.; Froese, K.L.; Schindler, D.W.; Muir, D.C.G. Assessment of PCBs in Snow and Lake Sediments Following a Major Release from the Alberta Special Waste Treatment Centre Near Swan Hills, Alberta, Canada. Organohalogen Compd. 1998, 39, 189–192. [Google Scholar]
- Melnikov, S.; Carroll, J.; Gorshkov, A.; Vlasov, S.; Dahle, S. Snow and ice concentrations of selected persistent pollutants in the Ob–Yenisey River watershed. Sci. Total Environ. 2003, 306, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, Ö.; Andersson, P.; Axelman, J.; Bucheli, T.D.; Kömp, P.; McLachlan, M.S.; Sobek, A.; Thörngren, J.-O. Observations of the PCB distribution within and in-between ice, snow, ice-rafted debris, ice-interstitial water, and seawater in the Barents Sea marginal ice zone and the North Pole area. Sci. Total Environ. 2005, 342, 261–279. [Google Scholar] [CrossRef] [PubMed]
- Korhonen, M.; Verta, M.; Salo, S.; Vuorenmaa, J.; Kiviranta, H.; Ruokojärvi, P. Atmospheric bulk deposition of polychlorinated dibenzo-p-dioxins, dibenzofurans, and polychlorinated biphenyls in Finland. J. Mar. Sci. Eng. 2016, 4, 56. [Google Scholar] [CrossRef] [Green Version]
- Cabrerizo, A.; Muir, D.C.G.; Teixeira, C.; Lamoureux, S.F.; Lafreniere, M.J. Snow deposition and melting as drivers of polychlorinated biphenyls and organochlorine pesticides in Arctic rivers, lakes, and ocean. Environ. Sci. Technol. 2019, 53, 14377–14386. [Google Scholar] [CrossRef]
- Cipro, C.V.Z.; Taniguchi, S.; Montone, R.C. Organic pollutants in snow and seasonal melting water from King George Island, Antarctica. Water Air Soil Pollut. 2017, 228, 149. [Google Scholar] [CrossRef]
- Khairy, M.A.; Luek, J.L.; Dickhut, R.; Lohmann, R. Levels, sources and chemical fate of persistent organic pollutants in the atmosphere and snow along the western Antarctic Peninsula. Environ. Pollut. 2016, 216, 304–313. [Google Scholar] [CrossRef] [Green Version]
- Vecchiato, M.; Argiriadis, E.; Zambon, S.; Barbante, C.; Toscano, G.; Gambaro, A.; Piazza, R. Persistent organic pollutants (POPs) in Antarctica: Occurrence in continental and coastal surface snow. Microchem. J. 2015, 119, 75–82. [Google Scholar] [CrossRef]
- Casal, P.; Casas, G.; Vila-Costa, M.; Cabrerizo, A.; Pizarro, M.; Jiménez, B.; Dachs, J. Snow Amplification of Persistent Organic Pollutants at Coastal Antarctica. Environ. Sci. Technol. 2019, 53, 8872–8882. [Google Scholar] [CrossRef]
- SanPiN 1.2.3685-21; Hygienic Standards and Requirements for Ensuring the Safety and (or) Harmlessness of Environmental Factors for Humans. Federal Center of Hygiene and Epidemiology: Moscow, Russia, 2021. Available online: http://publication.pravo.gov.ru/Document/View/0001202102030022?index=0&rangeSize=1 (accessed on 22 August 2022). (In Russian)
- GN 1.2.3539-18; Hygienic Standards for the Content of Pesticides in the Environment (the List). Federal Center of Hygiene and Epidemiology: Moscow, Russia, 2018. Available online: https://files.stroyinf.ru/Data2/1/4293737/4293737113.pdf (accessed on 7 October 2022). (In Russian)
- On Approval of Water Quality Standards for Water Bodies of Fishery Significance, Including Standards for Maximum Permissible Concentrations of Harmful Substances in the Waters of Water Bodies of Fishery Significance; Order N 552 dater; Ministry of agriculture of the Russian Federation: Moscow, Russia, 2016; Available online: https://docs.cntd.ru/document/420389120 (accessed on 22 November 2022). (In Russian)
- Chiarenzelli, J.; Scrudato, R.; Bush, B.; Carpenter, D.; Busharte, S. Do large-scale remedial and dredging events have the potential to release significant amounts of semivolatile compounds to the atmosphere? Environ. Health Perspect. 1998, 106, 4749. [Google Scholar] [CrossRef]
- McLachlan, M.S.; Koemp, P.; Wania, F.; Sanderson, T.; Päpke, O.; Kuzmin, M.I.; Tarasova, E.N.; Mamontov, A.A.; Mamontova, E.A.; Khomutova, M.I.; et al. Polychlorinated Biphenyls (PCB) in the Lake Baikal Region: Sources, Long-Rang Transport and Risk Assessment (Results of INTAS Grant 2000-00140); Publishing House of Institute of Geography SB RAS: Irkutsk, Russia, 2005; 52p. [Google Scholar]
- Sofiev, M.; Galperin, M.; Maslyaev, A.; McLachlan, M.; Wania, F. A fugacity model for source determination of the Lake Baikal region pollution with polychlorinated biphenyls. Organohalogen Compd. 2004, 66, 2322–2330. [Google Scholar]
- Tourism in Russia. Digest. Federal State Statistics Service. Available online: https://rosstat.gov.ru/statistics/turizm/publications (accessed on 1 November 2022). (In Russian)
- Ivanov, V.; Sandell, E. Characterization of polychlorinated biphenyl isomers in Sovol and Trichlorodiphenyl formulations by high-resolution gas chromatography with electron capture detection and high-resolution gas chromatography—Mass spectrometry techniques. Environ. Sci. Technol. 1992, 26, 2012–2017. [Google Scholar] [CrossRef]
- Takasuga, T.; Senthilkumar, K.; Matsumura, T.; Shiozaki, K.; Sakai, S. Isotope dilution analysis of polychlorinated biphenyls (PCBs) in transformer oil and global commercial PCB formulations by high resolution gas chromatography—High resolution mass spectrometry. Chemosphere 2006, 62, 469–484. [Google Scholar] [CrossRef]
- Burniston, D.A.; Strachan, W.J.M.; Hoff, J.T.; Wania, F. Changes in surface area and concentrations of semivolatile organic contaminants in aging snow. Environ. Sci. Technol. 2007, 41, 4932–4937. [Google Scholar] [CrossRef] [PubMed]
- Garmash, O.; Hermanson, M.H.; Isaksson, E.; Schwikowski, M.; Divine, D.; Teixeira, C.; Muir, D.C.G. Deposition history of polychlorinated biphenyls to the lomonosovfonna glacier, Svalbard: A 209 congener analysis. Environ. Sci. Technol. 2013, 47, 12064–12072. [Google Scholar] [CrossRef] [PubMed]
- AMAP Assessment 2016: Chemicals of Emerging Arctic Concern; Arctic Monitoring and Assessment Programme (AMAP): Oslo, Norway, 2017; 353p.
- Anh, H.Q.; Watanabe, I.; Minh, T.B.; Takahashi, S. Unintentionally produced polychlorinated biphenyls in pigments: An updated review on their formation, emission sources, contamination status, and toxic effects. Sci. Total Environ. 2021, 755, 142504. [Google Scholar] [CrossRef] [PubMed]
- Barber, J.L.; Sweetman, A.J.; van Wijk, D.; Jones, K.C. Hexachlorobenzene in the global environment: Emissions, levels, distribution, trends and processes. Sci. Total Environ. 2005, 349, 1–44. [Google Scholar] [CrossRef] [PubMed]
- Vulykh, N.; Putilina, V. Hexachlorobenzene: Properties, Emissions and Content in the Environment; Technical Note 6/2000; EMEP Meteorological Synthesizing Centre—East: Moscow, Russia, 2000; 84p, Available online: https://www.msceast.org (accessed on 1 November 2022).
- Klisenko, M.A. Methods for Determining Microquantities of Pesticides in Food, Feed and the Environment; Kolos: Moscow, Russia, 1992; 565p. (In Russian) [Google Scholar]
- Savchenkov, M.F.; Ignat’eva, L.P. Hygiene of the Application of Pesticides in Siberia; Publishing House of Irkutsk State University: Irkutsk, Russia, 1994; 184p. (In Russian) [Google Scholar]
- Fedorov, L.A.; Yablokov, A.V. Pesticides: A Toxic Blow to the Biosphere and Humans; Nauka Publishing House: Moscow, Russia, 1999; 462p. (In Russian) [Google Scholar]
- Mackay, D.; Shiu, W.Y.; Ma, K.-C.; Lee, S.C. Handbook of Physical—Chemical Properties and Environmental Fate for Organic Chemicals, 2nd ed.; Taylor & Francis Group: Boca Raton, FL, USA, 2006; 4181p. [Google Scholar]
- Mamontova, E.A.; Mamontov, A.A. Air Monitoring of Polychlorinated Biphenyls and Organochlorine Pesticides in Eastern Siberia: Levels, Temporal Trends, and Risk Assessment. Atmosphere 2022, 13, 1971. [Google Scholar] [CrossRef]
- Mamontova, E.A.; Tarasova, E.N.; Mamontov, A.A.; Kuzmin, M.I.; Borisov, B.Z.; Bulban, A.P.; Iurchenko, S.G.; Lepskaya, E.V.; Levshina, S.I.; Tregubov, O.D. Persistent organic pollutants in atmospheric air at some territories of Siberia and Russian Far East. Geograph. Nat. Res. 2012, 4, 40–47. (In Russian) [Google Scholar]
- Mamontova, E.A.; Tarasova, E.N.; Mamontov, A.A.; Goreglyad, A.V.; Tkachenko, L.L. Variations in the concentration of polychlorinated biphenyls and organochlorine pesticides in air over the Northern Hovsgol Region in 2008–2015. Russ. Meteorol. Hydrol. 2019, 44, 78–85. [Google Scholar] [CrossRef]
- Wania, F.; Su, Y. Quantifying the global fractionation of polychlorinated biphenyls. AMBIO J. Hum. Environ. 2004, 33, 161–168. [Google Scholar] [CrossRef] [PubMed]
- BCBK.INFO. Available online: https://bcbk.info/ (accessed on 1 November 2022).
Compound | Mean | Median | Min–Max | SD | SE | Mean | Median | Min–Max | SD | SE |
---|---|---|---|---|---|---|---|---|---|---|
ng/L | ng/m2 | |||||||||
HCB | 5.80 | 0.15 | bdl-286 | 38.8 | 5.28 | 341 | 9.51 | bdl-16,700 | 2270 | 309 |
HCB * | 0.62 | 0.15 | bdl-7.39 | 1.44 | 0.19 | 33 | 9.50 | bdl-360 | 77 | 10 |
α-HCH | 0.02 | 0.01 | bdl-0.66 | 0.09 | 0.01 | 0.70 | 0.42 | bdl-11.8 | 1.59 | 0.22 |
p,p`-DDT | 0.51 | 0.24 | bdl-8.47 | 1.17 | 0.16 | 21 | 14 | bdl-260 | 36 | 4.92 |
p,p`-DDE | 0.40 | 0.33 | bdl-1.52 | 0.34 | 0.05 | 20 | 18 | bdl-66 | 16 | 2.11 |
p,p`-DDD | 0.01 | 0.004 | bdl-0.07 | 0.01 | 0.002 | 0.48 | 0.23 | bdl-2.88 | 0,65 | 0.09 |
o,p`-DDT | 0.09 | 0.002 | bdl-0.87 | 0.15 | 0.02 | 4.61 | 0.18 | bdl-22 | 6.81 | 0.93 |
o,p`-DDD | 0.01 | 0.004 | bdl-0.06 | 0.01 | 0.002 | 0.31 | 0.23 | bdl-3.81 | 0.51 | 0.07 |
∑DDTs | 1.01 | 0.66 | bdl-9.80 | 1.44 | 0.20 | 47 | 37 | bdl-301 | 47 | 6.42 |
PCB-8 | 4.24 | 2.22 | bdl-23 | 5.07 | 0.68 | 245 | 120 | bdl-2470 | 382 | 51 |
PCB-11 | 0.22 | 0.22 | bdl-0.85 | 0.22 | 0.03 | 12 | 9.80 | bdl-66 | 14.0 | 1.88 |
PCB-31 | 8.77 | 3.92 | bdl-58 | 10.9 | 1.46 | 501 | 272 | bdl-5950 | 857 | 116 |
PCB-28 | 11.7 | 4.9 | bdl-76 | 14.2 | 1.9 | 642 | 342 | bdl-5870 | 918 | 124 |
PCB-52 | 5.06 | 3.75 | 0.76–36 | 5.65 | 0.76 | 294 | 185 | 24–2400 | 382 | 52 |
PCB-49 | 2.04 | 1.36 | bdl-12.4 | 2.19 | 0.30 | 115 | 71 | bdl-726 | 138 | 19 |
PCB-47 | 0.37 | 0.27 | bdl-1.90 | 0.38 | 0.05 | 21 | 14.2 | bdl-127 | 24 | 3.27 |
PCB-44 | 2.51 | 1.82 | 0.46–11.5 | 2.29 | 0.31 | 144 | 96 | 12–771 | 153 | 21 |
PCB-74 | 2.00 | 1.33 | bdl-16.5 | 2.52 | 0,34 | 116 | 76 | bdl-1105 | 168 | 23 |
PCB-66 | 0.38 | 0.27 | bdl-2.57 | 0.49 | 0.07 | 22 | 14.9 | bdl-170 | 31 | 4.16 |
PCB-91 | 0.63 | 0.39 | bdl-7.31 | 1.06 | 0.14 | 36 | 21 | bdl-427 | 64 | 8.67 |
PCB-56 | 0.10 | 0.07 | bdl-0.84 | 0.15 | 0.02 | 5.70 | 2.93 | bdl-49 | 9.04 | 1.22 |
PCB-101 | 5.29 | 3.24 | 0.45–66 | 9.41 | 1.27 | 303 | 164 | 23–3880 | 566 | 76 |
PCB-99 | 4.35 | 2.87 | 0.39–38 | 5.93 | 0.80 | 248 | 145 | 26–2220 | 364 | 49 |
PCB-97 | 1.30 | 0.81 | bdl-18.6 | 2.55 | 0.34 | 73 | 40 | bdl-1090 | 151 | 20.4 |
PCB-87 | 0.18 | 0.11 | bdl-2.56 | 0.35 | 0.05 | 10 | 5.4 | bdl-150 | 21 | 2.81 |
PCB-85 | 1.11 | 0.65 | bdl-14.2 | 2.00 | 0.27 | 63 | 35 | bdl-833 | 119 | 16.1 |
PCB-77 | 0.08 | 0.04 | bdl-0.66 | 0.11 | 0.02 | 4.06 | 2.29 | bdl-20 | 5.23 | 0.71 |
PCB-110 | 4.70 | 2.80 | 0.36–72 | 9.75 | 1.31 | 268 | 142 | 19.8–4210 | 577 | 77.8 |
PCB-149 | 1.37 | 0.63 | bdl-31 | 4.14 | 0.56 | 76 | 36 | bdl-1810 | 242 | 32.6 |
PCB-118 | 5.02 | 2.85 | 0.41–81 | 10.9 | 1.47 | 283 | 159 | 17.7–4740 | 639 | 86.2 |
PCB-153 | 2.09 | 0.96 | 0.09–47 | 6.27 | 0.85 | 117 | 55 | 5.0–2730 | 365 | 49.2 |
PCB-132 | 0.60 | 0.23 | bdl-15.6 | 2.09 | 0.28 | 34 | 12 | bdl-910 | 122 | 16.5 |
PCB-105 | 1.71 | 0.84 | bdl-32 | 4.32 | 0.58 | 96 | 46 | bdl-1880 | 252 | 33.9 |
PCB-141 | 0.26 | 0.05 | bdl-7.87 | 1.06 | 0.14 | 14.2 | 3.04 | bdl-460 | 62 | 8.36 |
PCB-138 | 3.10 | 1.17 | 0.11–78 | 10.5 | 1.42 | 174 | 65 | 6.7–4590 | 616 | 83 |
PCB-126 | 0.004 | 0.001 | bdl-0.14 | 0.02 | 0.003 | 0.21 | 0.05 | bdl-8.21 | 1.10 | 0.15 |
PCB-187 | 0.08 | 0.002 | bdl-3.11 | 0.42 | 0.06 | 4.44 | 0.12 | bdl-182 | 24.6 | 3.31 |
PCB-183 | 0.06 | 0.005 | bdl-2.30 | 0.31 | 0.04 | 3.38 | 0.29 | bdl-134 | 18.1 | 2.45 |
PCB-128 | 0.49 | 0.16 | bdl-14 | 1.89 | 0.25 | 27 | 8.31 | bdl-816 | 110 | 14.8 |
PCB-177 | 0.04 | 0.001 | bdl-1.93 | 0.26 | 0.04 | 2.49 | 0.04 | bdl-113 | 15.3 | 2.06 |
PCB-156 | 0.22 | 0.003 | bdl-8.09 | 1.10 | 0.15 | 12 | 0.19 | bdl-473 | 64 | 8.65 |
PCB-180 | 0.26 | 0.001 | bdl-9.63 | 1.30 | 0.18 | 14 | 0.09 | bdl-563 | 76 | 10.3 |
PCB-170 | 0.14 | 0.002 | bdl-5.77 | 0.78 | 0.11 | 7.73 | 0.12 | bdl-337 | 45 | 6.15 |
PCB-196 | 0.02 | 0.002 | bdl-0.98 | 0.13 | 0.02 | 1.14 | 0.08 | bdl-57 | 7.74 | 1.04 |
∑PCB36 | 70 | 46 | 9.0–628 | 89 | 12 | 3990 | 2620 | 274–36,700 | 5520 | 744 |
∑PCB7 | 27 | 18 | 3.1–228 | 33.5 | 4.5 | 1545 | 1060 | 93–13,350 | 2060 | 277 |
Site of Sampling | Time of Sampling | Type of Area | Instrumental Method | Number of PCB Congeners | Total PCB, ng/L | Reference |
---|---|---|---|---|---|---|
Russia, Irkutsk Region | II.2021 | industrial+ urban + rural + remote | GC-MS | 36 | 70 (9–628) | this study |
6 | 27 (3–228) | this study | ||||
Spain, Pyrenees, Lake Redo | II.1998 | remote | GC-MS | 7 | 0.22 | [40] |
Alps, Lake Gossenkolle | III,V.1997 | remote | GC-MS | 7 | 0.73 | [40] |
Switzerland, Alps, Lake Jori III | II.1997, II.1998 | remote | GC-MS | 7 | 2.2 | [40] |
Slovakia, Lake Starolesnianske | III.1998 | remote | GC-MS | 7 | 0.2 | [40] |
Norway, Ovre Neadalsvatn | III.1997/1998 | remote | GC-MS | 7 | 0.73 | [40] |
Alps, Monte Rosa massif, Colle del Lys | VII.2003 | remote | GC-MS | 31 | 0.091 | [41] |
Slovakia, Tatra Mountains | IV.2005 | remote | GC-μECD | 7 | 0.55–1.63 | [42] |
Austria, Tyrolean Alps | III.2006 | remote | GC-μECD | 7 | 0.46–0.9 | [43] |
The East Rongbuk Glacier, Mt. Everest | IX.2005 | remote | GC–HRMS | 7 | 0.016 (0.003–0.048) | [7] |
Russia, Moscow | III.2011 | urban | GC-MS | 13 | 280–560 | [44] |
Kazakhstan: -Talgar -Almata | 2014–2015 | urban | GC-ECD | 16 | 120–800 nd-3790 | [45] |
Kazakhstan, Almaty | 2018–2020 | urban | GC-ECD | 22 | 9–71 | [45] |
Kazakhstan | 2021 | remote | GC-ECD | 25 | 88–397 | [45] |
Canada | III.1997 | urban, industrial | GC-ECD | 100 | 0.7–45 | [46] |
Minneapolis/St. Paul | winter 1991–1993 | suburban | GC-ECD | 87 | 7.9; 4.6; 1.9 | [10] |
Arctic, Russia, the Ob–Yenisey watershed | winter 1992–spring 1993 | remote | GC-ECD+ GC–MS | 9 | 0.5 | [47] |
winter 1993–spring 1994 | GC-ECD+ GC–MS | 9 | 0.4 | [47] | ||
Arctic, Russia, Taimyr | 1995 | remote | GC-ECD+ GC–MS | 7 | 0.005 | [47] |
Arctic, the Barents Sea and the North Pole area: -dissolved -particulate | VI–VIII.2001 | remote | GC–HRMS | 15 | 0.002–0.007; 0.001–0.002; 0.099 | [48] |
Finland, Pallas; Evo | III.2003, 2004 | rural | HRGC–HRMS | 7 | 0.264; 0.285 | [49] |
Canadian High Arctic | V-VI.2016 | remote | GC-MS/MS | 70 | 0.233–0.788 | [50] |
Antarctica, South Shetland Archipelago, King George Island | XI-XII.2007 | remote | GC-ECD | 51 | 0.156 | [51] |
XII.2008 | remote | GC-ECD | 51 | 0.144 | [51] | |
II-III.2010 | remote | GC-ECD | 51 | 0.138 | [51] | |
The western Antarctic Peninsula | X-XI.2010 | remote | HRGC–HRMS | 29 | 0.77 (0.3–1.1) | [52] |
Antarctic (from Northern Victoria Land to the East Antarctic plateau) | austral summer 2011–2012 | remote | HRGC–HRMS | 127 7 | 0.11–0.58 0.018–0.19 | [53] |
Antarctic, South Shetland Archipelago, Livingston Island | XII.2014–III.2015 | remote | GC-μECD | 41 | 0.19 (0.078–0.417) | [54] |
Site of Sampling | Time of Sampling | N | ∑DDTs | ∑HCHs | HCB | Reference |
---|---|---|---|---|---|---|
Russia, Irkutsk Region | II.2021 | industrial+ urban + rural + remote | 1.01 (bdl-9.80) # | 0.02 (bdl-0.66) ** | 5.8 (bdl-286) | this study |
Spain, Pyrenees, Lake Redo | II.1998 | remote | bdl | 0.52 * | na | [40] |
Alps, Lake Gossenkolle | III,V.1997 | remote | 0.33 @ | 1.1 * | na | [40] |
Switzerland, Alps, Lake Jori III | II.1997, II.1998 | remote | bdl | 0.49 * | na | [40] |
Slovakia, Lake Starolesnianske | III.1998 | remote | 0.073 @ | 0.022 * | na | [40] |
Norway, Ovre Neadalsvatn | III.1997/1998 | remote | bdl | bdl | na | [40] |
Alps, Monte Rosa massif, Colle del Lys | VII.2003 | remote | 0.001 (nd-0.004) | 0.088 (0.011–0.25) * | 0.004 (0.003–0.006) | [41] |
Slovakia, Tatra Mountains | IV.2005 | remote | na | 0.026–0.075 * | 0.0034–0.0099 | [42] |
Austria, Tyrolean Alps | III.2006 | remote | na | 0.027–0.057 * | 0.037–0.055 | [43] |
The East Rongbuk Glacier, Mt. Everest | IX.2005 | remote | 0.024 (nd-0.043) | na | 0.033 (nd-0.14) | [7] |
Arctic, Russia, the Ob–Yenisey watershed | winter 1992–spring 1993 | remote | 0.6 # | 1.7 | trace | [47] |
winter 1993–spring 1994 | remote | 0.9 # | 1.5 | trace | [47] | |
Arctic, Russia, Taimyr | 1995 | 2.06 | 5.61 | 0.76 | [47] | |
Canadian High Arctic | V-VI.2016 | remote | na | 0.0027–0.020 *** | 0.0006–0.002 | [50] |
Antarctica, South Shetland Archipelago, King George Island | XI-XII.2007 | remote | 0.024 # | 0.004 ** | 0.004 | [51] |
XII.2008 | remote | 0.015 # | 0.003 ** | 0.003 | [51] | |
II-III.2010 | remote | 0.005 # | 0.001 ** | 0.001 | [51] | |
The western Antarctic Peninsula | X-XI.2010 | remote | na | na | 0.010–0.046 | [52] |
Antarctic, South Shetland Archipelago, Livingston Island | XII.2014–III.2015 | remote | na | 0.018 ** (0.001–0.030) | 0.008 (0.005–0.015) | [54] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mamontova, E.A.; Mamontov, A.A. Spatial and Temporal Variations of Polychlorinated Biphenyls and Organochlorine Pesticides in Snow in Eastern Siberia. Atmosphere 2022, 13, 2117. https://doi.org/10.3390/atmos13122117
Mamontova EA, Mamontov AA. Spatial and Temporal Variations of Polychlorinated Biphenyls and Organochlorine Pesticides in Snow in Eastern Siberia. Atmosphere. 2022; 13(12):2117. https://doi.org/10.3390/atmos13122117
Chicago/Turabian StyleMamontova, Elena A., and Alexander A. Mamontov. 2022. "Spatial and Temporal Variations of Polychlorinated Biphenyls and Organochlorine Pesticides in Snow in Eastern Siberia" Atmosphere 13, no. 12: 2117. https://doi.org/10.3390/atmos13122117
APA StyleMamontova, E. A., & Mamontov, A. A. (2022). Spatial and Temporal Variations of Polychlorinated Biphenyls and Organochlorine Pesticides in Snow in Eastern Siberia. Atmosphere, 13(12), 2117. https://doi.org/10.3390/atmos13122117