Characteristics of PM2.5 Pollution in Osorno, Chile: Ion Chromatography and Meteorological Data Analyses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Aerosol Samples
2.2. PM2.5 Analyses
2.3. Image J Analysis
2.4. Cartography
2.5. Ion Chromatography Analyses
2.5.1. Sample Preparation and Ion Chromatography Settings
2.5.2. Comparison of PM2.5 Concentration and Individual Ions
2.5.3. Correlation of Selected Ions
2.6. Backward Trajectory Analysis
3. Results and Discussion
3.1. PM2.5 Analyses
3.1.1. PM2.5 Variation Analysis
3.1.2. PM2.5 and Meteorological Factors
3.2. Image J Analysis
3.3. Ion Chromatography Analysis
3.3.1. Comparison of PM2.5 Concentration and Individual Ions
3.3.2. Correlation of Selected Ions
3.4. Backward Trajectory Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Instituto Nacional de Estadísticas. Censos de Población y Vivienda. Available online: https://www.ine.cl/ (accessed on 23 August 2021).
- Molina, C.; Toro, A.R.; Morales, S.R.G.; Manzano, C.; Leiva-Guzmán, M.A. Particulate matter in urban areas of south-central Chile exceeds air quality standards. Air Qual. Atmos. Health 2017, 10, 653–667. [Google Scholar] [CrossRef]
- World Health Organization (WHO). WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021; Available online: https://apps.who.int/iris/handle/10665/345329 (accessed on 17 December 2021).
- Health Effects Institute. State of Global Air 2020; Data source: Global Burden of Disease Study 2019; Institute for Health Metrics and Evaluation: Seattle, WA, USA, 2020; Available online: https://www.stateofglobalair.org/data/#/health/plot (accessed on 15 October 2021).
- Garcia-Chevesich, P.A.; Alvarado, S.; Neary, D.G.; Valdes, R.; Valdes, J.; Aguirre, J.J.; Mena, M.; Pizarro, R.; Jofré, P.; Vera, M.; et al. Respiratory disease and particulate air pollution in Santiago Chile: Contribution of erosion particles from fine sediments. Environ. Pollut. 2014, 187, 202–205. [Google Scholar] [CrossRef]
- Sanhueza, P.A.; Torreblanca, M.A.; Diaz-Robles, L.A.; Schiappacasse, L.N.; Silva, M.P.; Astete, T.D. Particulate air pollution and health effects for cardiovascular and respiratory causes in Temuco, Chile: A wood-smoke polluted urban area. J. Air Waste Manag. Assoc. 2009, 59, 1481–1488. [Google Scholar] [CrossRef]
- Dominici, F.; Peng, R.D.; Bell, M.L.; Pham, L.; McDermott, A.; Zeger, S.L.; Samet, J.M. Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. JAMA 2006, 295, 1127–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gan, W.Q.; FitzGerald, J.M.; Carlsten, C.; Sadatsafavi, M.; Brauer, M. Associations of ambient air pollution with chronic obstructive pulmonary disease hospitalization and mortality. Am. J. Respir. Crit. Care Med. 2013, 187, 721–727. [Google Scholar] [CrossRef] [PubMed]
- Krewski, D.; Burnett, R.; Jerrett, M.; Pope, C.A.; Rainham, D.; Calle, E.; Thurston, G.; Thun, M. Mortality and long-term exposure to ambient air pollution: Ongoing analyses based on the American Cancer Society cohort. J. Toxicol. Environ. Health 2005, 68, 1093–1109. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A., 3rd; Burnett, R.T.; Thurston, G.D.; Thun, M.J.; Calle, E.E.; Krewski, D.; Godleski, J.J. Cardiovascular mortality and long-term exposure to particulate air pollution- Epidemiological evidence of general pathophysiological pathways of disease. Circulation 2004, 109, 71–77. [Google Scholar] [CrossRef] [Green Version]
- Pope, C.A., 3rd; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA 2002, 287, 1132–1141. [Google Scholar] [CrossRef] [Green Version]
- Rosenlund, M.; Berglind, N.; Pershagen, G.; Hallqvist, J.; Jonson, T.; Bellander, T. Long-term exposure to urban air pollution and myocardial infarction. Epidemiology 2006, 17, 383–390. [Google Scholar] [CrossRef]
- Koutrakis, P.; Sax, S.N.; Sarnat, J.A.; Coull, B.; Demokritou, P.; Demokritou, P.; Oyola, P.; Garcia, J.; Gramsch, E. Analysis of PM10, PM2.5, and PM2.5–10 concentrations in Santiago, Chile, from 1989 to 2001. J. Air Waste Manag. Assoc. 2005, 55, 342–351. [Google Scholar] [CrossRef]
- Yang, Q.; Yuan, Q.; Li, T.; Shen, H.; Zhang, L. The relationships between PM2.5 and meteorological factors in China: Seasonal and regional variations. Int. J. Environ. Res. Public Health 2017, 14, 1510. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Ccoyllo, O.R.; De Fátima Andrade, M. The influence of meteorological conditions on the behavior of pollutants concentrations in São Paulo, Brazil. Environ. Pollut. 2002, 116, 257–263. [Google Scholar] [CrossRef]
- DeGaetano, A.T.; Doherty, O.M. Temporal, spatial and meteorological variations in hourly PM2.5 concentration extremes in New York City. Atmos. Environ. 2004, 38, 1547–1558. [Google Scholar] [CrossRef]
- Met One Instruments. BAM 1020 Particulate Monitor Operation Manual; Met One Instruments: Grants Pass, OR, USA, 2016; Available online: https://metone.com/wp-content/uploads/2019/04/BAM-1020-9800-Manual-Rev-U.pdf (accessed on 17 August 2021).
- Hafkenscheid, T.L.; Vonk, J. Evaluation of Equivalence of the MetOne BAM-1020 for the Measurement of PM2.5 in Ambient Air; RIVM Letter Report 2014-0078; National Institute for Public Health and the Environment: Bilthoven, The Netherlands, 2014. [Google Scholar]
- Image, J. Image J Features. Available online: https://imagej.nih.gov/ij/features.html (accessed on 17 August 2021).
- Harrison, R.; Perry, R. Handbook of Air Pollution Analysis; Chapman and Hall: London, UK, 1986. [Google Scholar]
- Moore, D.S.; Notz, W.; Fligner, M.A. The Basic Practice of Statistics, 6th ed.; W.H. Freeman and Company: New York, NY, USA, 2011; Chapter 4. [Google Scholar]
- Asuero, A.G.; Sayago, A.; González, A.G. The correlation coefficient: An overview. Crit. Rev. Anal. Chem. 2007, 36, 41–59. [Google Scholar] [CrossRef]
- Westgard, Q.C. Z-12: Correlation and Simple Least Squares Regression. Available online: https://www.westgard.com/lesson42.htm#2 (accessed on 7 December 2021).
- National Oceanic and Atmospheric Administration (NOAA). Air Resources Laboratory. Available online: https://www.ready.noaa.gov/HYSPLIT.php (accessed on 17 August 2021).
- Liu, Z.; Hu, B.; Wang, L.; Wu, F.; Gao, W.; Wang, Y. Seasonal and diurnal variation in particulate matter (PM10 and PM2.5) at an urban site of Beijing: Analysis from a 9-year study. Environ. Sci. Pollut. Res. Int. 2015, 22, 627–642. [Google Scholar] [CrossRef]
- Mena-Carrasco, M.; Saide, P.; Delgado, R.; Hernandez, P.; Spak, S.; Molina, L.; Carmichael, G.; Jiang, X. Regional climate feedbacks in Central Chile and their effect on air quality episodes and meteorology. Urban Clim. 2014, 10, 771–781. [Google Scholar] [CrossRef]
- Sistema de Información Nacional de Calidad del Aire, Ministerio del Medio Ambiente. Available online: https://sinca.mma.gob.cl/index.php/estacion/index/key/A01 (accessed on 28 December 2021).
- Garreaud, R.D. The Andes climate and weather. Adv. Geosci. 2009, 22, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Reizer, M.; Juda-Rezler, K. Explaining the high PM10 concentrations observed in Polish urban areas. Air Qual. Atmos. Health 2016, 9, 517–531. [Google Scholar] [CrossRef] [PubMed]
- Hussein, T.; Karppinen, A.; Kukkonen, J.; Härkönen, J.; Aalto, P.P.; Hämeri, K.; Kerminen, V.M.; Kulmala, M. Meteorological dependence of size-fractionated number concentrations of urban aerosol particles. Atmos. Environ. 2006, 40, 1427–1440. [Google Scholar] [CrossRef]
- Wiinikka, H.; Gebart, R. Critical parameters for particle emissions in small-scale fixed-bed combustion of wood pellets. Energy Fuels 2004, 18, 897–907. [Google Scholar] [CrossRef]
- Celis, J.E.; Morales, J.R.; Zaror, C.A.; Carvacho, O.F. Contaminación del aire atmosférico por material particulado en una ciudad intermedia: El Caso de Chillán (Chile). Inf. Tecnol. 2007, 18, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Ancelet, T.; Davy, P.K.; Trompetter, W.J.; Markwitz, A.; Weatherburn, D.C. Sources and transport of particulate matter on an hourly time-scale during the winter in a New Zealand urban valley. Urban Clim. 2014, 10, 644–655. [Google Scholar] [CrossRef]
- Guo, L.C.; Zhang, Y.; Lin, H.; Zeng, W.; Liu, T.; Xiao, J.; Rutherford, S.; You, J.; Ma, W. The washout effects of rainfall on atmospheric particulate pollution in two Chinese cities. Environ. Pollut. 2016, 215, 195–202. [Google Scholar] [CrossRef] [PubMed]
- Adler, G.; Flores, J.M.; Riziq, A.A.; Borrmann, S.; Rudich, Y. Chemical, physical, and optical evolution of biomass burning aerosols: A case study. Atmos. Chem. Phys. 2011, 11, 1491–1503. [Google Scholar] [CrossRef] [Green Version]
- Wall, C.; Zipser, E.; Liu, C. An investigation of the aerosol indirect effect on convective intensity using satellite observations. J. Atmos. Sci. 2014, 71, 430–447. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Guo, J.; Li, Z.; Zhao, C.; Liu, H.; Cribb, M.; Wang, F.; He, J. A CloudSat perspective on the cloud climatology and its association with aerosol perturbation in the vertical over East China. J. Atmos. Sci. 2016, 73, 3599–3616. [Google Scholar] [CrossRef]
- Rutllant, J.; Garreaud, R. Meteorological air pollution potential for Santiago, Chile: Towards an objective episode forecasting. Environ. Monit. Assess. 1995, 34, 223–244. [Google Scholar] [CrossRef]
- Garreaud, R.D.; Rutllant, J.A.; Fuenzalida, H. Coastal lows along the subtropical west coast of South America: Mean structure and evolution. Mon. Weather Rev. 2002, 130, 75–88. [Google Scholar] [CrossRef] [Green Version]
- Peña, R. Prevalence Distribution of Chronic Obstructive Pulmonary Disease in the Commune of Osorno, Los Lagos Region, Chile in 2018. Master’s Thesis, Universidad Mayor, Santiago, Chile, 2020. (In Spanish). [Google Scholar]
- Wu, X.; Nethery, R.C.; Sabath, M.B.; Braun, D.; Dominici, F. Air pollution and COVID-19 mortality in the United States: Strengths and limitations of an ecological regression analysis. Sci Adv. 2020, 6, eabd4049. [Google Scholar] [CrossRef]
- Noda, J.; Tomizawa, S.; Takahashi, K.; Morimoto, K.; Mitarai, S. Air pollution and airborne infection with mycobacterial bioaerosols: A potential attribution of soot. Int. J. Environ. Sci. Technol. 2021, 19, 717–726. [Google Scholar] [CrossRef]
- Mansurov, Z.A. Soot Formation in Combustion Processes (Review). Combust. Explos. Shock Waves 2015, 41, 727. [Google Scholar] [CrossRef]
- Xi, J.; Yang, G.; Cai, J.; Gu, Z. A review of recent research results on soot: The formation of a kind of carbon-based material in flames. Front. Mater. 2021, 8, 695485. [Google Scholar] [CrossRef]
- Atiku, F.A.; Mitchell, E.J.S.; Lea-Langton, A.R.; Jones, J.M.; Williams, A.; Bartle, K.D. The impact of fuel properties on the composition of soot produced by the combustion of residential solid fuels in a domestic Stove. Fuel Process. Technol. 2016, 151, 117–125. [Google Scholar] [CrossRef]
- Clery, D.S.; Mason, P.E.; Rayner, C.M.; Jones, J.M. The effects of an additive on the release of potassium in biomass combustion. Fuel 2018, 214, 647–655. [Google Scholar] [CrossRef]
- Noda, J.; Bergström, B.; Kong, X.; Gustafsson, T.L.; Kovacevik, B.; Svane, M.; Pettersson, J.B.C. Aerosol from biomass combustion in Northern Europe: Influence of meteorological conditions and air mass history. Atmosphere 2019, 10, 789. [Google Scholar] [CrossRef] [Green Version]
- Finlayson-Pitts, B.J.; Pitts, J.N., Jr. Atmospheric Chemistry: Fundamentals and Experimental Techniques; John Wiley & Sons: New York, NY, USA, 1986. [Google Scholar]
- Abbatt, J.P.D.; Lee, A.K.Y.; Thornton, J.A. Quantifying trace gas uptake to tropospheric aerosol: Recent advances and remaining challenges. Chem. Soc. Rev. 2012, 41, 6555–6581. [Google Scholar] [CrossRef]
- Wang, X.; Jacob, D.J.; Eastham, S.D.; Sulprizio, M.P.; Zhu, L.; Chen, Q.; Alexander, B.; Sherwen, T.; Evans, M.J.; Lee, B.H.; et al. The role of chlorine in global tropospheric chemistry. Atmos. Chem. Phys. 2019, 19, 3981–4003. [Google Scholar] [CrossRef] [Green Version]
- Kundu, S.; Stone, E.A. Composition and sources of fine particulate matter across urban and rural sites in the Midwestern United States. Environ. Sci. Process. Impacts 2014, 16, 1360–1370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McMeeking, G.R.; Kreidenweis, S.M.; Baker, S.; Carrico, C.M.; Chow, J.C.; Collett, J.L.; Hao, W.M.; Holden, A.S.; Kirchstetter, T.W.; Malm, W.C.; et al. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory. J. Geophys. Res. Atmos. 2009, 114, D19210. [Google Scholar] [CrossRef] [Green Version]
24 h-Average PM2.5 Range (µg/m3) | Defined Air Quality (Min. Environ.) | Measured 24 h-Average PM2.5 (µg/m3) | Days (#) | RH (%) | Tmin (°C) | Tmax (°C) | PB (hPa) | Wind Speed (m/s) | Rainfall (mm/24 h) |
---|---|---|---|---|---|---|---|---|---|
0–50 | Good | 27.4 ± 10.8 | 77 | 88.8 ± 7.1 | 9.3 ± 2.9 | 15.5 ± 3.4 | 1007 ± 5.6 | 0.35 ± 0.31 | 0.42 ± 0.36 |
51–79 | Moderate | 63.7 ± 9.7 | 26 | 89.1 ± 6.4 | 6.7 ± 2.7 | 13.6 ± 3.0 | 1009 ± 5.5 | 0.39 ± 0.47 | 0.21 ± 0.23 |
80–109 | Alert | 93.3 ± 11.2 | 18 | 88.6 ± 6.7 | 5.9 ± 2.7 | 13.7 ± 3.2 | 1012 ± 4.4 | 0.30 ± 0.38 | 0.14 ± 0.15 |
110–169 | Preemergency | 132.5 ± 16 | 17 | 88.3 ± 6.8 | 3.8 ± 2.7 | 13.1 ± 3.3 | 1012 ± 6.6 | 0.27 ± 0.27 | 0.09 ± 0.24 |
≥170 | Emergency | 228.0 ± 58.0 | 12 | 91.8 ± 3.9 | 2.5 ± 1.9 | 11.6 ± 2.0 | 1015 ± 4.7 | 0.11 ± 0.20 | 0.02 ± 0.04 |
F− | Cl− | NO3− | SO42− | Na+ | NH4+ | Mg2+ | Ca2+ | K+ | PM2.5 | |
---|---|---|---|---|---|---|---|---|---|---|
F− | - | 0.65 | 0.48 | 0.48 | 0.52 | 0.35 | 0.2 | 0.16 | 0.67 | 0.07 |
Cl− | - | - | 0.42 | 0.58 | 0.62 | 0.29 | 0.38 | 0.2 | 0.58 | 0.51 |
NO3− | - | - | - | 0.4 | 0.35 | 0.28 | 0.14 | 0.18 | 0.39 | 0.08 |
SO42− | - | - | - | - | 0.4 | 0.01 | 0.18 | 0.29 | 0.2 | 0.17 |
Na+ | - | - | - | - | - | 0.35 | 0.61 | 0.55 | 0.67 | 0.59 |
NH4+ | - | - | - | - | - | - | 0.14 | 0.15 | 0.6 | 0.17 |
Mg2+ | - | - | - | - | - | - | - | 0.48 | 0.26 | 0.14 |
Ca2+ | - | - | - | - | - | - | - | - | 0.19 | 0.06 |
K+ | - | - | - | - | - | - | - | - | - | 0.93 |
PM2.5 | - |
Date, Hours | PM2.5 (µg/m3) | HR (%) | Temp. (°C) | Wind Speed (m/s) | Wind Direction (°) | Rainfall (mm) |
---|---|---|---|---|---|---|
3 July, 18–23 | 361.5 | 91.8 | 8.1 | 0.2 | 4 | 0.0 |
29 July, 6–11 | 24.0 | 98.3 | 12.2 | - | - | 0.0 |
29 July, 12–17 | 36.5 | 95.2 | 12.8 | - | - | 0.9 |
29 July, 18–23 | 21.3 | 98.9 | 12.1 | - | - | 1.6 |
26 August, 18–23 | 208.0 | 80.9 | 8.4 | 0.2 | 28 | 0.0 |
27 August, 0–5 | 60.2 | 99.1 | 3.9 | 0.0 | 0–28 | 0.0 |
27 August, 6–11 | 14.5 | 93.4 | 8.3 | 0.2 | 0 | 0.0 |
27 August, 12–17 | 12.7 | 89.4 | 12.9 | 0.5 | 0–22 | 1.0 |
27 August, 18–23 | 32.7 | 98.4 | 13.0 | 0.2 | 60–174 | 1.9 |
28 August, 0–5 | 14.7 | 97.9 | 10.2 | 0.8 | 4–174 | 1.0 |
28 August, 6–11 | 19.0 | 98.3 | 8.1 | 0.0 | 60–150 | 1.5 |
28 August, 12–17 | 18.3 | 74.4 | 11.5 | 0.5 | 150 | 0.0 |
28 August, 18–23 | 93.2 | 93.8 | 8.5 | 0.2 | 150–184 | 0.6 |
29 August, 0–5 | 19.8 | 98.2 | 7.3 | 0.0 | 34–184 | 0.6 |
29 August, 6–11 | 25.5 | 93.3 | 9.0 | 0.0 | 38 | 0.0 |
29 August, 12–17 | 11.8 | 74.3 | 13.0 | 0.8 | 38–40 | 0.0 |
29 August, 18–23 | 91.8 | 89.0 | 9.4 | 0.3 | 40 | 0.0 |
30 August, 0–5 | 28.8 | 96.9 | 8.1 | 0.0 | 0–40 | 0.0 |
30 August, 6–11 | 50.3 | 85.0 | 9.9 | 0.0 | 0 | 0.0 |
30 August, 12–17 | 16.2 | 67.8 | 14.1 | 0.3 | 0 | 0.0 |
30 August, 18–23 | 84.7 | 88.4 | 9.9 | 0.5 | 0–2 | 0.0 |
31 August, 0–4 | 91.0 | 95.7 | 7.4 | 0.0 | 0–2 | 0.0 |
31 August, 5–8 | 72.0 | 97.9 | 6.5 | 0.3 | 0 | 0.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakamura, A.; Nakatani, N.; Maruyama, F.; Fujiyoshi, S.; Márquez-Reyes, R.; Fernández, R.; Noda, J. Characteristics of PM2.5 Pollution in Osorno, Chile: Ion Chromatography and Meteorological Data Analyses. Atmosphere 2022, 13, 168. https://doi.org/10.3390/atmos13020168
Nakamura A, Nakatani N, Maruyama F, Fujiyoshi S, Márquez-Reyes R, Fernández R, Noda J. Characteristics of PM2.5 Pollution in Osorno, Chile: Ion Chromatography and Meteorological Data Analyses. Atmosphere. 2022; 13(2):168. https://doi.org/10.3390/atmos13020168
Chicago/Turabian StyleNakamura, Ayane, Nobutake Nakatani, Fumito Maruyama, So Fujiyoshi, Rodrigo Márquez-Reyes, Ricardo Fernández, and Jun Noda. 2022. "Characteristics of PM2.5 Pollution in Osorno, Chile: Ion Chromatography and Meteorological Data Analyses" Atmosphere 13, no. 2: 168. https://doi.org/10.3390/atmos13020168
APA StyleNakamura, A., Nakatani, N., Maruyama, F., Fujiyoshi, S., Márquez-Reyes, R., Fernández, R., & Noda, J. (2022). Characteristics of PM2.5 Pollution in Osorno, Chile: Ion Chromatography and Meteorological Data Analyses. Atmosphere, 13(2), 168. https://doi.org/10.3390/atmos13020168