Relationships between Extratropical Precipitation Systems and UTLS Temperatures and Tropopause Height from GPM and GPS-RO
Abstract
:1. Introduction
2. Data Description
2.1. GPM Precipitation Feature Product
2.2. GPS Radio Occultation Data
2.3. ERA-Interim Data
3. Methodology
3.1. PF and GPS Temperature Profile Classification Using Potential Vorticity
3.2. Additional Quality Control
3.3. UTLS Temperature Anomaly and Tropopause Height/Temperature Anomaly Calculations
4. Sampling and PF Characteristics
5. Results
5.1. Relationship of PF Characteristics to UTLS Temperature Anomalies
5.1.1. Non-DSI PFs
5.1.2. DSI PFs
5.2. Relationship of PFs to Tropopause Height/Temperature Anomalies
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gettelman, A.; Birner, T. Insights into Tropical Tropopause Layer Processes Using Global Models. J. Geophys. Res. 2007, 112, D23104. [Google Scholar] [CrossRef] [Green Version]
- Peevey, T.R.; Gille, J.C.; Homeyer, C.R.; Manney, G.L. The Double Tropopause and Its Dynamical Relationship to the Tropopause Inversion Layer in Storm Track Regions. J. Geophys. Res. 2014, 119, 10,194–10,212. [Google Scholar] [CrossRef] [Green Version]
- Birner, T. Fine-Scale Structure of the Extratropical Tropopause Region. J. Geophys. Res. 2006, 111, D04104. [Google Scholar] [CrossRef] [Green Version]
- Gettelman, A.; Pan, L.L.; Randel, W.J.; Hoor, P.; Birner, T.; Hegglin, M.I. The Extratropical Upper Troposphere and Lower Stratosphere. Rev. Geophys. 2011, 49, RG3003. [Google Scholar] [CrossRef] [Green Version]
- Holton, J.R.; Haynes, P.H.; Mcintyre, M.E.; Douglass, A.R.; Rood, R.B.; Pfister, L. Stratosphere-Troposphere Exchange. Rev. Geophys. 1995, 95, 403–439. [Google Scholar] [CrossRef]
- Haynes, P.; Scinocca, J.; Greenslade, M. Formation and Maintenance of the Extratropical Tropopause by Baroclinic Eddies. Geophys. Res. Lett. 2001, 28, 4179–4182. [Google Scholar] [CrossRef] [Green Version]
- Randel, W.J.; Seidel, D.J.; Pan, L.L. Observational Characteristics of Double Tropopauses. J. Geophys. Res. 2007, 112, D07309. [Google Scholar] [CrossRef] [Green Version]
- World Meteorological Organization (WMO). Atmospheric Ozone 1985; WMO: Geneva, Switzerland, 1986; pp. 1–1095. [Google Scholar]
- Hoskins, B.J.; McIntyre, M.E.; Robertson, A.W. On the Use and Significance of Isentropic Potential Vorticity Maps. Q. J. R. Meteorol. Soc. 1985, 111, 877–946. [Google Scholar] [CrossRef]
- Pan, L.L.; Randel, W.J.; Gary, B.L.; Mahoney, M.J.; Hintsa, E.J. Definitions and Sharpness of the Extratropical Tropopause: A Trace Gas Perspective. J. Geophys. Res. 2004, 109, D23103. [Google Scholar] [CrossRef]
- Santer, B.D.; Sausen, R.; Wigley, T.M.L.; Boyle, J.S.; AchutaRao, K.; Doutriaux, C.; Hansen, J.E.; Meehl, G.A.; Roeckner, E.; Ruedy, R.; et al. Behavior of Tropopause Height and Atmospheric Temperature in Models, Reanalyses, and Observations: Decadal Changes. J. Geophys. Res. Atmos. 2003, 108, 4002. [Google Scholar] [CrossRef] [Green Version]
- Grosvenor, D.P.; Choularton, T.W.; Coe, H.; Held, G. A Study of the Effect of Overshooting Deep Convection on the Water Content of the TTL and Lower Stratosphere from Cloud Resolving Model Simulations. Atmos. Chem. Phys. 2007, 7, 4977–5002. [Google Scholar] [CrossRef] [Green Version]
- Fueglistaler, S.; Dessler, A.E.; Dunkerton, T.J.; Folkins, I.; Fu, Q.; Ote, P.W. Tropical Tropopause Layer. Rev. Geophys. 2009, 47, RG1004. [Google Scholar] [CrossRef]
- Hassim, M.E.E.; Lane, T.P. A Model Study on the Influence of Overshooting Convection on TTL Water Vapour. Atmos. Chem. Phys. 2010, 10, 9833–9849. [Google Scholar] [CrossRef] [Green Version]
- Held, I.M. On the Height of the Tropopause and the Static Stability of the Troposphere. J. Atmos. Sci. 1982, 39, 412–417. [Google Scholar] [CrossRef] [Green Version]
- Sherwood, S.; Horinouchi, T.; Zeleznik, H. Convective Impact on Temperatures Observed near the Tropical Tropopause. J. Atmos. Sci. 2003, 60, 1847–1857. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Dessler, A.E. Observations of Convective Cooling in the Tropical Tropopause Layer in AIRS Data. Atmos. Chem. Phys. Discuss. 2004, 4, 7615–7629. [Google Scholar] [CrossRef] [Green Version]
- Randel, W.J.; Wu, F.; Rios, W. Thermal Variability of the Tropical Tropopause Region Derived from GPS/MET Observations. J. Geophys. Res. 2003, 108, 4024. [Google Scholar] [CrossRef]
- Holloway, C.; Neelin, J.D. The Convective Cold Top and Quasi Equilibrium. J. Atmos. Sci. 2007, 64, 1467–1488. [Google Scholar] [CrossRef]
- Paulik, L.C.; Birner, T. Quantifying the Deep Convective Temperature Signal within the Tropical Tropopause Layer (TTL). Atmos. Chem. Phys. 2012, 12, 12183–12195. [Google Scholar] [CrossRef] [Green Version]
- Khaykin, S.M.; Pommereau, J.-P.; Hauchecorne, a. Impact of Land Convection on Temperature Diurnal Variation in the Tropical Lower Stratosphere Inferred from COSMIC GPS Radio Occultations. Atmos. Chem. Phys. 2013, 13, 6391–6402. [Google Scholar] [CrossRef] [Green Version]
- Xian, T.; Fu, Y. Characteristics of Tropopause-Penetrating Convection Determined by TRMM and COSMIC GPS Radio Occultation Measurements. J. Geophys. Res. Atmos. 2015, 120, 7006–7024. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Randel, W.J.; Birner, T. Convectively Driven Tropopause-Level Cooling and Its Influences on Stratospheric Moisture. J. Geophys. Res. Atmos. 2018, 123, 590–606. [Google Scholar] [CrossRef]
- Johnston, B.R.; Xie, F.; Liu, C. The Effects of Deep Convection on Regional Temperature Structure in the Tropical Upper Troposphere and Lower Stratosphere. J. Geophys. Res. Atmos. 2018, 123, 1585–1603. [Google Scholar] [CrossRef]
- Sprenger, M.; Wernli, H.; Bourqui, M. Identification and ERA-15 Climatology of Potential Vorticity Streamers and Cutoffs near the Extratropical Tropopause. J. Atmos. Sci. 2007, 64, 1569–1586. [Google Scholar] [CrossRef]
- Danielsen, E.F. Stratospheric-Tropospheric Exchange Based on Radioactivity, Ozone and Potential Vorticity. J. Atmos. Sci. 1968, 25, 502–518. [Google Scholar] [CrossRef]
- Baray, J.L.; Daniel, V.; Ancellet, G.; Legras, B. Planetary-Scale Tropopause Folds in the Southern Subtropics. Geophys. Res. Lett. 2000, 27, 353–356. [Google Scholar] [CrossRef] [Green Version]
- Price, J.D.; Vaughan, G. The Potential for Stratosphere-Troposphere Exchange in Cut-off Low Systems. Q. J. R. Meteorol. Soc. 1993, 119, 343–365. [Google Scholar] [CrossRef]
- Lamarque, J.-F.; Langford, A.O.; Proffitt, M.H. Cross-Tropopause Mixing of Ozone through Gravity Wave Breaking: Observation and Modeling. J. Geophys. Res. Atmos. 1996, 101, 22969–22976. [Google Scholar] [CrossRef]
- Stenchikov, G.; Dickerson, R.; Pickering, K.; Ellis, W.; Doddridge, B.; Kondragunta, S.; Poulida, O.; Scala, J.; Tao, W.K. Stratosphere-Troposphere Exchange in a Midlatitude Mesoscale Convective Complex: 2. Numerical Simulations. J. Geophys. Res. Atmos. 1996, 101, 6837–6851. [Google Scholar] [CrossRef]
- Reid, H.J.; Vaughan, G. Convective Mixing in a Tropopause Fold. Q. J. R. Meteorol. Soc. 2004, 130, 1195–1212. [Google Scholar] [CrossRef] [Green Version]
- Vaughan, G.; Price, J.D.; Howells, A. Transport into the Troposphere in a Tropopause Fold. Q. J. R. Meteorol. Soc. 1994, 120, 1085–1103. [Google Scholar] [CrossRef]
- Gray, S.L. A Case Study of Stratosphere to Troposphere Transport: The Role of Convective Transport and the Sensitivity to Model Resolution. J. Geophys. Res. 2003, 108, 4590. [Google Scholar] [CrossRef]
- Homeyer, C.R.; Pan, L.L.; Dorsi, S.W.; Avallone, L.M.; Weinheimer, A.J.; O’Brien, A.S.; DiGangi, J.P.; Zondlo, M.A.; Ryerson, T.B.; Diskin, G.S.; et al. Convective Transport of Water Vapor into the Lower Stratosphere Observed during Double Tropopause Events. J. Geophys. Res. Atmos. 2014, 119, 10941–10958. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Liu, C.; Zipser, E.J. The Global Distribution of Largest, Deepest, and Most Intense Precipitation Systems. Geophys. Res. Lett. 2015, 42, 3591–3595. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Liu, C. Global Distribution of Deep Convection Reaching Tropopause in 1 Year GPM Observations. J. Geophys. Res. Atmos. 2016, 121, 3824–3842. [Google Scholar] [CrossRef] [Green Version]
- Anthes, R.A.; Ector, D.; Hunt, D.C.; Kuo, Y.-H.; Rocken, C.; Schreiner, W.S.; Sokolovskiy, S.V.; Syndergaard, S.; Wee, T.-K.; Zeng, Z.; et al. The COSMIC/FORMOSAT-3 Mission: Early Results. Bull. Am. Meteorol. Soc. 2008, 89, 313–333. [Google Scholar] [CrossRef]
- Kummerow, C.; Barnes, W.; Kozu, T.; Shiue, J.; Simpson, J. The Tropical Rainfall Measuring Mission (TRMM) Sensor Package. J. Atmos. Ocean. Technol. 1998, 15, 809–818. [Google Scholar] [CrossRef]
- Liu, C.; Zipser, E.J.; Cecil, D.J.; Nesbitt, S.W.; Sherwood, S. A Cloud and Precipitation Feature Database from Nine Years of TRMM Observations. J. Appl. Meteorol. Climatol. 2008, 47, 2712–2728. [Google Scholar] [CrossRef]
- Seto, S.; Iguchi, T.; Oki, T. The Basic Performance of a Precipitation Retrieval Algorithm for the Global Precipitation Measurement Mission’s Single/Dual-Frequency Radar Measurements. IEEE Trans. Geosci. Remote Sens. 2013, 51, 5239–5251. [Google Scholar] [CrossRef] [Green Version]
- Hamada, A.; Takayabu, Y.N. Improvements in Detection of Light Precipitation with the Global Precipitation Measurement Dual-Frequency Precipitation Radar (GPM DPR). J. Atmos. Ocean. Technol. 2016, 33, 653–667. [Google Scholar] [CrossRef]
- Beyerle, G.; Grunwaldt, L.; Heise, S.; Köhler, W.; König, R.; Michalak, G.; Rothacher, M.; Schmidt, T.; Wickert, J.; Tapley, B.D.; et al. First Results from the GPS Atmosphere Sounding Experiment TOR Aboard the TerraSAR-X Satellite. Atmos. Chem. Phys. 2011, 11, 6687–6699. [Google Scholar] [CrossRef] [Green Version]
- Beyerle, G.; Schmidt, T.; Michalak, G.; Heise, S.; Wickert, J.; Reigber, C. GPS Radio Occultation with GRACE: Atmospheric Profiling Utilizing the Zero Difference Technique. Geophys. Res. Lett. 2005, 32, L13806. [Google Scholar] [CrossRef] [Green Version]
- Smith, E.K.; Weintraub, S. The Constants in the Equation for Atmospheric Refractive Index at Radio Frequencies. Proc. IRE 1953, 41, 1035–1037. [Google Scholar] [CrossRef] [Green Version]
- Foelsche, U.; Borsche, M.; Steiner, A.K.; Gobiet, A.; Pirscher, B.; Kirchengast, G.; Wickert, J.; Schmidt, T. Observing Upper Troposphere-Lower Stratosphere Climate with Radio Occultation Data from the CHAMP Satellite. Clim. Dyn. 2008, 31, 49–65. [Google Scholar] [CrossRef] [Green Version]
- Kursinski, E.R.; Hajj, G.A.; Schofield, J.T.; Linfield, R.P.; Hardy, K.R. Observing Earth’s Atmosphere with Radio Occultation Measurements Using the Global Positioning System. J. Geophys. Res. Atmos. 1997, 102, 23429–23465. [Google Scholar] [CrossRef]
- Zeng, Z.; Sokolovskiy, S.; Schreiner, W.S.; Hunt, D. Representation of Vertical Atmospheric Structures by Radio Occultation Observations in the Upper Troposphere and Lower Stratosphere: Comparison to High-Resolution Radiosonde Profiles. J. Atmos. Ocean. Technol. 2019, 36, 655–670. [Google Scholar] [CrossRef]
- Steiner, A.K.; Ladstädter, F.; Ao, C.O.; Gleisner, H.; Ho, S.P.; Hunt, D.; Schmidt, T.; Foelsche, U.; Kirchengast, G.; Kuo, Y.H.; et al. Consistency and Structural Uncertainty of Multi-Mission GPS Radio Occultation Records. Atmos. Meas. Tech. 2020, 13, 2547–2575. [Google Scholar] [CrossRef]
- Labitzke, K.; Kunze, M. Variability in the Stratosphere: The Sun and the QBO. In Climate and Weather of the Sun-Earth System (CAWSES); TERRAPUB: Tokyo, Japan, 2009; pp. 257–278. [Google Scholar]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, P.; Xu, X. Variations of the Tropopause Over Different Latitude Bands Observed Using COSMIC Radio Occultation Bending Angles. IEEE Trans. Geosci. Remote Sens. 2014, 52, 2339–2349. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Bony, S.; Li, Y. Thermodynamic Constraint on the Depth of the Global Tropospheric Circulation. Proc. Natl. Acad. Sci. USA 2017, 114, 8181–8186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McIntyre, M.E.; Norton, W.A. Potential Vorticity Inversion on a Hemisphere. J. Atmos. Sci. 2000, 57, 1214–1235. [Google Scholar] [CrossRef]
- Kunz, A.; Konopka, P.; Müller, R.; Pan, L.L. Dynamical Tropopause Based on Isentropic Potential Vorticity Gradients. J. Geophys. Res. Atmos. 2011, 116, D01110. [Google Scholar] [CrossRef] [Green Version]
- Chen, P. Isentropic Cross-Tropopause Mass Exchange in the Extratropics. J. Geophys. Res. 1995, 100, 16661–16673. [Google Scholar] [CrossRef]
- Appenzeller, C.; Davies, H.C.; Norton, W.A. Fragmentation of Stratospheric Intrusions. J. Geophys. Res. Atmos. 1996, 101, 1435–1456. [Google Scholar] [CrossRef]
- Škerlak, B.; Sprenger, M.; Pfahl, S.; Tyrlis, E.; Wernli, H. Tropopause Folds in ERA-Interim: Global Climatology and Relation to Extreme Weather Events. J. Geophys. Res. Atmos. 2015, 120, 4860–4877. [Google Scholar] [CrossRef]
- Funatsu, B.M.; Waugh, D.W. Connections between Potential Vorticity Intrusions and Convection in the Eastern Tropical Pacific. J. Atmos. Sci. 2008, 65, 987–1002. [Google Scholar] [CrossRef]
- Goering, M.A.; Gallus, W.A.; Olsen, M.A.; Stanford, J.L. Role of Stratospheric Air in a Severe Weather Event: Analysis of Potential Vorticity and Total Ozone. J. Geophys. Res. 2001, 106, 11813–11823. [Google Scholar] [CrossRef]
- Seidel, D.J.; Randel, W.J. Recent Widening of the Tropical Belt: Evidence from Tropopause Observations. J. Geophys. Res. 2007, 112, D20113. [Google Scholar] [CrossRef] [Green Version]
- Johnston, B.; Xie, F. Characterizing Extratropical Tropopause Bimodality and Its Relationship to the Occurrence of Double Tropopauses Using COSMIC GPS Radio Occultation Observations. Remote Sens. 2020, 12, 1109. [Google Scholar] [CrossRef] [Green Version]
- Pan, L.L.; Randel, W.J.; Gille, J.C.; Hall, W.D.; Nardi, B.; Massie, S.; Yudin, V.; Khosravi, R.; Konopka, P.; Tarasick, D. Tropospheric Intrusions Associated with the Secondary Tropopause. J. Geophys. Res. 2009, 114, D10302. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Liu, C.; Hayden, L. Climatology and Detection of Overshooting Convection From 4 Years of GPM Precipitation Radar and Passive Microwave Observations. J. Geophys. Res. Atmos. 2020, 125, e2019JD032003. [Google Scholar] [CrossRef]
- Machado, L.A.T.; Rossow, W.B.; Guedes, R.L.; Walker, A.W. Life Cycle Variations of Mesoscale Convective Systems over the Americas. Mon. Weather. Rev. 1998, 126, 1630–1654. [Google Scholar] [CrossRef]
- Houze, R.A. Observed Structure of Mesoscale Convective Systems and Implications for Large-Scale Heating. Q. J. R. Meteorol. Soc. 1989, 115, 425–461. [Google Scholar] [CrossRef]
- Schumacher, C.; Houze, R.A.; Kraucunas, I. The Tropical Dynamical Response to Latent Heating Estimates Derived from the TRMM Precipitation Radar. J. Atmos. Sci. 2004, 61, 1341–1358. [Google Scholar] [CrossRef] [Green Version]
- Joos, H.; Wernli, H. Influence of Microphysical Processes on the Potential Vorticity Development in a Warm Conveyor Belt: A Case-Study with the Limited-Area Model COSMO. Q. J. R. Meteorol. Soc. 2012, 138, 407–418. [Google Scholar] [CrossRef]
- Schemm, S.; Wernli, H. The Linkage between the Warm and the Cold Conveyor Belts in an Idealized Extratropical Cyclone. J. Atmos. Sci. 2014, 71, 1443–1459. [Google Scholar] [CrossRef] [Green Version]
- Chae, J.H.; Wu, D.L.; Read, W.G.; Sherwood, S.C. The Role of Tropical Deep Convective Clouds on Temperature, Water Vapor, and Dehydration in the Tropical Tropopause Layer (TTL). Atmos. Chem. Phys. 2011, 11, 3811–3821. [Google Scholar] [CrossRef] [Green Version]
- Grise, K.M.; Thompson, D.W.J.; Birner, T. A Global Survey of Static Stability in the Stratosphere and Upper Troposphere. J. Clim. 2010, 23, 2275–2292. [Google Scholar] [CrossRef]
- Uccellini, L.W. The Possible Influence of Upstream Upper-Level Baroclinic Processes on the Development of the QE II Storm. Mon. Weather. Rev. 1986, 114, 1019–1027. [Google Scholar] [CrossRef]
- Reed, R.J. A Study of a Characteristic Type of Upper-Level Frontogenesis. J. Meteorol. 1955, 12, 226–237. [Google Scholar] [CrossRef]
- Bosart, L.F.; Lin, S.C. A Diagnostic Analysis of the Presidents’ Day Storm of February 1979. Mon. Weather. Rev. 1984, 112, 2148–2177. [Google Scholar] [CrossRef] [Green Version]
- Biondi, R.; Steiner, A.K.; Kirchengast, G.; Rieckh, T. Characterization of Thermal Structure and Conditions for Overshooting of Tropical and Extratropical Cyclones with GPS Radio Occultation. Atmos. Chem. Phys. 2015, 15, 5181–5193. [Google Scholar] [CrossRef] [Green Version]
- Biondi, R.; Randel, W.J.; Ho, S.-P.; Neubert, T.; Syndergaard, S. Thermal Structure of Intense Convective Clouds Derived from GPS Radio Occultations. Atmos. Chem. Phys. 2012, 12, 5309–5318. [Google Scholar] [CrossRef] [Green Version]
- Randel, W.J.; Wu, F. The Polar Summer Tropopause Inversion Layer. J. Atmos. Sci. 2010, 67, 2572–2581. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnston, B.R.; Xie, F.; Liu, C. Relationships between Extratropical Precipitation Systems and UTLS Temperatures and Tropopause Height from GPM and GPS-RO. Atmosphere 2022, 13, 196. https://doi.org/10.3390/atmos13020196
Johnston BR, Xie F, Liu C. Relationships between Extratropical Precipitation Systems and UTLS Temperatures and Tropopause Height from GPM and GPS-RO. Atmosphere. 2022; 13(2):196. https://doi.org/10.3390/atmos13020196
Chicago/Turabian StyleJohnston, Benjamin R., Feiqin Xie, and Chuntao Liu. 2022. "Relationships between Extratropical Precipitation Systems and UTLS Temperatures and Tropopause Height from GPM and GPS-RO" Atmosphere 13, no. 2: 196. https://doi.org/10.3390/atmos13020196
APA StyleJohnston, B. R., Xie, F., & Liu, C. (2022). Relationships between Extratropical Precipitation Systems and UTLS Temperatures and Tropopause Height from GPM and GPS-RO. Atmosphere, 13(2), 196. https://doi.org/10.3390/atmos13020196