Exploring the Impact of Planetary Boundary Layer Schemes on Rainfall Forecasts for Typhoon Mujigae, 2015
Abstract
:1. Introduction
2. Case Review
3. Data and Experiment Design
3.1. Data
3.2. Experiment Design
4. Results
4.1. Track and Intensity of Mujigae
4.2. Precipitation
5. Mechanisms
5.1. Sensible and Latent Heat Flux
5.2. Vapor Flux
5.3. Vertical Velocity
5.4. PBL Height
5.5. Tangential and Radial Velocity
6. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leslie, L.M.; Holland, G.J. On the Bogussing of Tropical Cyclones in Numerical Models: A Comparison of Vortex Profiles. Meteorol. Atmos. Phys. 1995, 56, 101–110. [Google Scholar] [CrossRef]
- Mathur, M.B. Development of an Eye-Wall like Structure in a Tropical Cyclone Model Simulation. Dyn. Atmos. Ocean. 1998, 27, 527–547. [Google Scholar] [CrossRef]
- Gu, J.; Xiao, Q.; Kuo, Y.H.; Barker, D.M.; Ma, X. Assimilation and Simulation of Typhoon Rusa (2002) Using the WRF System. Adv. Atmos. Sci. 2005, 22, 13. [Google Scholar]
- Xu, J.; Rugg, S.; Horner, M.; Byerle, L. Application of ATOVS Radiance with ARW WRF/GSI Data Assimilation System in the Prediction of Hurricane Katrina. Open Atmos. Sci. J. 2009, 3, 13–28. [Google Scholar] [CrossRef]
- Subramani, D.; Chandrasekar, R.; Ramanujam, K.S.; Balaji, C. A New Ensemble-Based Data Assimilation Algorithm to Improve Track Prediction of Tropical Cyclones. Nat. Hazards 2014, 71, 659–682. [Google Scholar] [CrossRef]
- Srinivas, C.V.; Mohan, G.M.; Yesubabu, V.; Hariprasad, K.; Venkatraman, B. Data Assimilation Experiments with ARW–3DVAR for Tropical Cyclone Extreme Weather Predictions Over Bay of Bengal; Tropical Cyclone Activity over the North Indian Ocean; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Xu, D.; Shen, F.; Min, J.; Shu, A. Assimilation of GPM Microwave Imager Radiance for Track Prediction of Typhoon Cases with the WRF Hybrid En3DVAR System. Adv. Atmos. Sci. 2021, 38, 983–993. [Google Scholar] [CrossRef]
- Chen, S.; Xu, F.; Zhang, Y.; Ye, G.; Xu, J.; Liu, C. Sensitivity of Typhoon Lingling (2019) Simulations to Horizontal Mixing Length and Planetary Boundary Layer Parameterizations. Front. Earth Sci. 2021, 1–19. [Google Scholar] [CrossRef]
- Li, X.; Pu, Z. Sensitivity of Numerical Simulation of Early Rapid Intensification of Hurricane Emily (2005) to Cloud Microphysical and Planetary Boundary Layer Parameterizations. Mon. Weather Rev. 2008, 136, 4819–4838. [Google Scholar] [CrossRef]
- Xi, D.; Chu, K.; Tan, Z.M.; Gu, J.F.; Shen, W.; Zhang, Y.; Tang, J. Characteristics of Warm Cores of Tropical Cyclones in a 25-Km-Mesh Regional Climate Simulation over CORDEX East Asia Domain. Clim. Dyn. 2021, 57, 2375–2389. [Google Scholar] [CrossRef]
- Stull, R.B. An Introduction to Boundary Layer Meteorology||Mean Boundary Layer Characteristics; Springer: Cham, Switzerland, 1988; pp. 1–27. [Google Scholar]
- Emanuel, K.A. Some Aspects of Hurricane Inner-Core Dynamics and Energetics. J. Atmos. Sci. 1997, 54, 1014–1026. [Google Scholar] [CrossRef]
- Smith, R.K.; Thomsen, G.L. Dependence of Tropical-cyclone Intensification on the Boundary-layer Representation in a Numerical Model. Q. J. R. Meteorol. Soc. 2010, 136, 1671–1685. [Google Scholar] [CrossRef]
- Zhang, J.A.; Rogers, R.F. Effects of Parameterized Boundary Layer Structure on Hurricane Rapid Intensification in Shear. Mon. Weather 2018, 147, 853–871. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, F.; Pu, Z. Numerical Simulation of the Rapid Intensification of Hurricane Katrina (2005): Sensitivity to Boundary Layer Parameterization Schemes. Adv. Atmos. Sci. 2017, 34, 482–496. [Google Scholar] [CrossRef]
- Braun, S.A.; Tao, W.K. Sensitivity of High-Resolution Simulations of Hurricane Bob (1991) to Planetary Boundary Layer Parameterizations. Mon. Weather Rev. 2000, 128, 3941. [Google Scholar] [CrossRef] [Green Version]
- Dong, M.; Ji, C.; Chen, F.; Wang, Y. Numerical Study of Boundary Layer Structure and Rainfall after Landfall of Typhoon Fitow (2013): Sensitivity to Planetary Boundary Layer Parameterization. Adv. Atmos. Sci. 2019, 36, 431–450. [Google Scholar] [CrossRef]
- Skamarock, C.; Klemp, B.; Dudhia, J.; Gill, O.; Liu, Z.; Berner, J.; Wang, W.; Powers, G.; Duda, G.; Barker, D.M.; et al. A Description of the Advanced Research WRF Model Version 4; National Center for Atmospheric Research: Boulder, CO, USA, 2019. [Google Scholar]
- Cohen, A.E.; Cavallo, S.M.; Coniglio, M.C.; Brooks, H.E. A Review of Planetary Boundary Layer Parameterization Schemes and Their Sensitivity in Simulating Southeastern U.S. Cold Season Severe Weather Environments. Weather Forecast. 2015, 30, 591–612. [Google Scholar] [CrossRef]
- Dzebre, D.E.; Adaramola, M.S. A Preliminary Sensitivity Study of Planetary Boundary Layer Parameterisation Schemes in the Weather Research and Forecasting Model to Surface Winds in Coastal Ghana. Renew. Energy 2020, 146, 66–86. [Google Scholar] [CrossRef]
- Jia, W.; Zhang, X. The Role of the Planetary Boundary Layer Parameterization Schemes on the Meteorological and Aerosol Pollution Simulations: A Review. Atmos. Res. 2020, 239, 104890. [Google Scholar] [CrossRef]
- Wu, Q.; Ruan, Z.; Chen, D.; Lian, T. Diurnal Variations of Tropical Cyclone Precipitation in the Inner and Outer Rainbands. J. Geophys. Res. Atmos. 2015, 120, 1–11. [Google Scholar] [CrossRef]
- Ankur, K.; Busireddy, N.K.R.; Osuri, K.K.; Niyogi, D. On the Relationship between Intensity Changes and Rainfall Distribution in Tropical Cyclones over the North Indian Ocean. Int. J. Climatol. 2019, 40, 2015–2025. [Google Scholar] [CrossRef]
- Liu, M.; Yang, L.; Smith, J.A.; Vecchi, G.A. Response of Extreme Rainfall for Landfalling Tropical Cyclones Undergoing Extratropical Transition to Projected Climate Change: Hurricane Irene (2011). Earth Future 2020, 8, e2019EF001360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tu, S.; Xu, J.; Chan, J.; Huang, K.; Long, S.C. Recent Global Decrease in the Inner-Core Rain Rate of Tropical Cyclones. Nat. Commun. 2021, 12, 1948. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.X.; Yang, J.Y.; Zhang, X.X.; Deng, H.Y. Analysis of the Characteristics of Severe Typhoon Mujigae (1522). Guangdong Meteorol. 2016, 38, 6–9. [Google Scholar]
- Cai-Ling, L.I.; Yan, L.J.; Zhao-Hui, L.I.; Mai, X.H.; Huang, X.X. Analysis of a Tornado in Outside-Region of Typhoon Mujigae in 2015. J. Trop. Meteorol. 2016, 32, 416–424. [Google Scholar]
- Huang, J.; Wang, S.; Liang, Y.; Chen, X.; Bureau, G.M. Diagnostic Analysis of Rainstorm Associated with Typhoon “Rainbow” in the Autumn of 2015. Chin. Agric. Sci. Bull. 2017, 2017, 14. [Google Scholar]
- Hong, S.Y.; Pan, H.L. Nonlocal Boundary Layer Vertical Diffusion in a Medium-Range Forecast Model. Mon. Weather Rev. 1996, 124, 2322. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.Y.; Noh, Y.; Dudhia, J. A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes. Mon. Weather Rev. 2005, 134, 2318. [Google Scholar] [CrossRef] [Green Version]
- Janji, Z.I. The Step-Mountain Eta Coordinate Model: Further Developments of the Convection, Viscous Sublayer, and Turbulence Closure Schemes. Mon. Weather Rev. 1994, 122, 927. [Google Scholar] [CrossRef] [Green Version]
- Sukoriansky, S.; Galperin, B.; Perov, V. Application of a New Spectral Theory of Stably Stratified Turbulence to the Atmospheric Boundary Layer over Sea Ice. Bound. Layer Meteorol. 2005, 117, 231–257. [Google Scholar] [CrossRef]
- Liu, G.R.; Liu, C.C.; Huang, C.S.; Lin, T.H.; Chen, W.J.; Chao, C.C. Diagnosing the Growth of Equatorial Typhoon Vamei (2001) from an Energy Standpoint. Terr. Atmos. Ocean. Sci. 2010, 21, 817–827. [Google Scholar] [CrossRef] [Green Version]
- Dunion, J.P.; Thorncroft, C.D.; Nolan, D.S. Tropical Cyclone Diurnal Cycle Signals in a Hurricane Nature Run. Mon. Weather Rev. 2019, 147, 363–388. [Google Scholar] [CrossRef]
- Korhonen, K.; Giannakaki, E.; Mielonen, T.; Pfüller, A.; Laakso, L. Atmospheric Boundary Layer Top Height in South Africa: Measurements with Lidar and Radiosonde Compared to Three Atmospheric Models. Atmos. Chem. Phys. 2014, 14, 4263–4278. [Google Scholar] [CrossRef] [Green Version]
- Seibert, P.; Beyrich, F.; Gryning, S.E.; Joffre, S.; Rasmussen, A.; Tercier, P. Review and Intercomparison of Operational Methods for the Determination of the Mixing Height. Atmos. Environ. 2000, 34, 1001–1027. [Google Scholar] [CrossRef]
- Adl, A.; Mn, B.; Rmga, B.; Lld, A. Sensitivity of Meteorological Variables on Planetary Boundary Layer Parameterization Schemes in the WRF-ARW Model—ScienceDirect. Atmos. Res. 2020, 247, 105214. [Google Scholar]
Title 1 | Description |
---|---|
Initial and border conditions | FNL reanalysis |
Model domain | D01: 408 × 323 × 40 D02:832 × 721 × 40 D03:829 × 703 × 40 (moving) |
Central spot | (18.5°N, 113.5°E) |
Horizontal resolution | 12 km; 4 km;1.33 km |
Pressure at top level | 50 hPa |
Number of vertical levels | 40 |
Microphysics | WSM6 schemes |
Cumulus Parameterization | Kain–Fritsch (turning off in D03) |
Longwave radiation | RRTM |
Shortwave radiation | Dudhia |
Surface processes | Noah |
PBL schemes | YSU scheme, MYJ scheme, MRF scheme, QNSE scheme |
YSU | MRF | MYJ | QNSE | |
---|---|---|---|---|
Inner core | 33.6 | 1.1 | 52.9 | 95.7 |
Outer region | −23.6 | −26.1 | −33.2 | −22.1 |
Q850 | W | SHF | LH | Precipitation | ||
---|---|---|---|---|---|---|
Inner core | MRF | 31.6 | 1.4 | 136.4 | 1.1 | |
YSU | 34.8 | 28.1 | 191.1 | 33.6 | ||
MYJ | 33.9 | 55.8 | 211.0 | 52.9 | ||
QNSE | 44.9 | 77.8 | 565.5 | 95.7 | ||
Outer region | MRF | 7.5 | −6.9 | 65.5 | −26.1 | |
YSU | 7.2 | 3.3 | 42.7 | −23.6 | ||
MYJ | 6.3 | 4.9 | 18.9 | −33.2 | ||
QNSE | 8.8 | 1.1 | 69.6 | −22.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shen, W.; Lu, Z.; Ye, G.; Zhang, Y.; Chen, S.; Xu, J. Exploring the Impact of Planetary Boundary Layer Schemes on Rainfall Forecasts for Typhoon Mujigae, 2015. Atmosphere 2022, 13, 220. https://doi.org/10.3390/atmos13020220
Shen W, Lu Z, Ye G, Zhang Y, Chen S, Xu J. Exploring the Impact of Planetary Boundary Layer Schemes on Rainfall Forecasts for Typhoon Mujigae, 2015. Atmosphere. 2022; 13(2):220. https://doi.org/10.3390/atmos13020220
Chicago/Turabian StyleShen, Wenqi, Zebin Lu, Guilin Ye, Yu Zhang, Siqi Chen, and Jianjun Xu. 2022. "Exploring the Impact of Planetary Boundary Layer Schemes on Rainfall Forecasts for Typhoon Mujigae, 2015" Atmosphere 13, no. 2: 220. https://doi.org/10.3390/atmos13020220
APA StyleShen, W., Lu, Z., Ye, G., Zhang, Y., Chen, S., & Xu, J. (2022). Exploring the Impact of Planetary Boundary Layer Schemes on Rainfall Forecasts for Typhoon Mujigae, 2015. Atmosphere, 13(2), 220. https://doi.org/10.3390/atmos13020220