The Effect of Anthropogenic Heat and Moisture on Local Weather at Industrial Heat Islands: A Numerical Experiment
Abstract
:1. Introduction
2. Study Area
2.1. Topographical Features
2.2. Climatological Features
2.3. Industrial Features
3. Model System Setup
3.1. Model Domain
3.2. Initial and Boundary Conditions
3.3. Physics Options
4. Methodology
4.1. Description of Numerical Experiment
- ❖
- To validate the WRF simulation as a control run against the TRMM PR’s observation. Based on this validation exercise, the best set of microphysics and parameterisation options are found.
- ❖
- To perform a numerical experiment (Exp 1) to study the effect of heat released to the atmosphere by increasing temperature by 10 K at the industrial site and exponentially decreasing with height up to the atmospheric boundary layer. The relative humidity is recalculated, corresponding to the perturbed temperature.
- ❖
- Finally, to compare the numerical experiment result against the case in which only the temperature alone is perturbed (Exp 2) based on an earlier study [56]. Since relative humidity is unchanged in this case, the water vapour content in the atmosphere would significantly increase.
4.2. Design of Numerical Experiment
- T0 = Initial Temperature
- T1 = Temperature after perturbation by increasing 10 K
- ∅0, ∅1 = RH before and after perturbation
5. Results and Discussion
5.1. Validation
5.2. Rain Event 1
5.3. Rain Event 2
5.4. Discussion
6. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sailor, D.J.; Lu, L. A Top–Down Methodology for Developing Diurnal and Seasonal Anthropogenic Heating Profiles for Urban Areas. Atmos. Environ. 2004, 38, 2737–2748. [Google Scholar] [CrossRef]
- Fan, H.; Sailor, D.J. Modeling the Impacts of Anthropogenic Heating on the Urban Climate of Philadelphia: A Comparison of Implementations in Two PBL Schemes. Atmos. Environ. 2005, 39, 73–84. [Google Scholar] [CrossRef]
- Carson, J.E. Some Comments on the Atmospheric Consequences of Thermal Enrichment from Power Generating Stations on a Large Lake. In Proceedings of the 65th Annual Meeting of the Air Pollution Control Association, Atlantic City, NJ, USA, 27 June–1 July 1971. [Google Scholar]
- Hanna, S.R.; Swisher, S.D. Meteorological Effects of Heat and Moisture Produced by Man. Nucl. Saf. 1971, 12, 114–122. [Google Scholar]
- Hanna, S.R.; Gifford, F.A. Meteorological Effects of Energy Dissipation at Large Power Parks. Bull. Am. Meteorol. Soc. 1975, 56, 1069–1077. [Google Scholar] [CrossRef] [Green Version]
- Huff, F.A. Effect of Cooling Tower Effluents on Atmospheric Conditions in Northeastern Illinois: Preliminary Report; Illinois State Water Survey: Urbana, IL, USA, 1971. [Google Scholar]
- Huff, F.A. Potential Augmentation of Precipitation from Cooling Tower Effluents. Bull. Am. Meteorol. Soc. 1972, 53, 639–645. [Google Scholar] [CrossRef]
- Khemani, L.T.; Murty, B.V.R. Rainfall Variations in an Urban Industrial Region. J. Appl. Meteorol. 1973, 12, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Martin, A. The Influence of a Power Station on Climate—A Study of Local Weather Records. Atmos. Environ. 1974, 8, 419–424. [Google Scholar] [CrossRef]
- Selvam, A.M.; Manohar, G.K.; Murty, B.V.R. Rainfall Variations around a Thermal Power Station. Atmos. Environ. 1976, 10, 963–968. [Google Scholar] [CrossRef]
- Hindman, E.E.; Tag, P.M.; Silverman, B.A.; Hobbs, P.V. Cloud Condensation Nuclei from a Paper Mill. Part II: Calculated Effects on Rainfall. J. Appl. Meteorol. 1977, 16, 753–755. [Google Scholar] [CrossRef]
- Murray, F.W.; Koenig, L.R.; Tag, P.M. Numerical Simulation of an Industrial Cumulus and Comparison with Observations. J. Appl. Meteorol. Climatol. 1978, 17, 655–668. [Google Scholar] [CrossRef] [Green Version]
- Guan, S.; Reuter, G.W. Numerical Simulation of a Rain Shower Affected by Waste Energy Released from a Cooling Tower Complex in a Calm Environment. J. Appl. Meteorol. 1995, 34, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Guan, S.; Reuter, G.W. Numerical Simulation of an Industrial Cumulus Affected by Heat, Moisture, and CCN Released from an Oil Refinery. J. Appl. Meteorol. Climatol. 1996, 35, 1257–1264. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, J.M.; Burian, S.J. Detection of Urban-Induced Rainfall Anomalies in a Major Coastal City. Earth Interact. 2003, 7, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Shepherd, J.M. A Review of Current Investigations of Urban-Induced Rainfall and Recommendations for the Future. Earth Interact. 2005, 9, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.C.; Wang, S.Y.; Yen, M.C. Enhancement of Afternoon Thunderstorm Activity by Urbanisation in a Valley: Taipei. J. Appl. Meteorol. Climatol. 2007, 46, 1324–1340. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, X.; Tang, J.; Fang, J.; Sun, X. Simulation of Urban Heat Island Effect and Its Impact on Atmospheric Boundary Layer Structure Over Yangtze River Delta Region in Summer. J. Meteorol. Sci. 2011, 31, 431–440. [Google Scholar]
- Ichinose, T.; Shimodozono, K.; Hanaki, K. Impact of Anthropogenic Heat on Urban Climate in Tokyo. Atmos. Environ. 1999, 33, 3897–3909. [Google Scholar] [CrossRef]
- Shahmohamadi, P.; Che-Ani, A.I.; Maulud, K.N.A.; Tawil, N.M.; Abdullah, N.A.G. The Impact of Anthropogenic Heat on Formation of Urban Heat Island and Energy Consumption Balance. Urban Stud. Res. 2011, 2011, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Ramamurthy, P.; González, J.; Ortiz, L.; Arend, M.; Moshary, F. Impact of Heatwave on a Megacity: An Observational Analysis of New York City during July 2016. Environ. Res. Lett. 2017, 12, 054011. [Google Scholar] [CrossRef]
- Atkinson, B.W. The Effect of an Urban Area on the Precipitation from a Moving Thunderstorm. J. Appl. Meteorol. 1971, 10, 47–55. [Google Scholar] [CrossRef]
- Huff, F.A. Urban Hydrometeorology Review: The Robert E. Horton Lecture. In Proceedings of the Sixth Conference on Hydrometeorology, Indianapolis, Ind, USA, 29 October 1985. Bull. Am. Meteorol. Soc. 1986, 67, 703–712. [Google Scholar] [CrossRef] [Green Version]
- Ackerman, B.; Changnon, S.; Dzurisin, G.; Gatz, D.L.; Grosh, R.C. Summary of METROMEX, Volume 2: Causes of Precipitation Anomalies; Illinois State Water Survey: Urbana, IL, USA, 1978. [Google Scholar]
- Huff, F.A.; Vogel, J.L. Urban, Topographic and Diurnal Effects on Rainfall in the St. Louis Region. J. Appl. Meteorol. Climatol. 1978, 17, 565–577. [Google Scholar] [CrossRef] [Green Version]
- Changnon, S.A.; Semonin, R.G.; Auer, A.H.; Braham, R.R.; Hales, J. METROMEX: A Review and Summary. Meteormonogr. No. 40. Amer. Meteor. Soc. 1981, 1, 81. [Google Scholar]
- Changnon, S.A.; Shealy, R.T.; Scott, R.W. Precipitation Changes in Fall, Winter, and Spring Caused by St. Louis. J. Appl. Meteorol. Climatol. 1991, 30, 126–134. [Google Scholar] [CrossRef] [Green Version]
- Bornstein, R.D.; LeRoy, G.M. Urban Barrier Effects on Convective and Frontal Thunderstorms. Preprints. In Proceedings of the 4th AMS Conference on Mesoscale Processes, Boulder, CO, USA, 25–29 June 1990; pp. 508–516. [Google Scholar]
- Shepherd, J.M.; Pierce, H.; Negri, A.J. Rainfall Modification by Major Urban Areas: Observations from Spaceborne Rain Radar on the TRMM Satellite. J. Appl. Meteorol. 2002, 41, 689–701. [Google Scholar] [CrossRef]
- Mote, T.L.; Lacke, M.C.; Shepherd, J.M. Radar Signatures of the Urban Effect on Precipitation Distribution: A Case Study for Atlanta, Georgia. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef]
- Feng, J.M.; Wang, Y.L.; Ma, Z.G.; Liu, Y.H. Simulating the Regional Impacts of Urbanisation and Anthropogenic Heat Release on Climate across China. J. Clim. 2012, 25, 7187–7203. [Google Scholar] [CrossRef]
- Chen, F.; Yang, X.; Wu, J. Simulation of the Urban Climate in a Chinese Megacity with Spatially Heterogeneous Anthropogenic Heat Data. J. Geophys. Res. Atmos. 2016, 121, 5193–5212. [Google Scholar] [CrossRef]
- Nie, W.; Zaitchik, B.; Ni, G.; Sun, T. Impacts of Anthropogenic Heat on Summertime Rainfall in Beijing. J. Hydrometeorol. 2017, 18, 693–712. [Google Scholar] [CrossRef]
- Kusaka, H.; Nawata, K.; Suzuki-Parker, A.; Takane, Y.; Furuhashi, N. Mechanism of Precipitation Increase with Urbanisation in Tokyo as Revealed by Ensemble Climate Simulations. J. Appl. Meteorol. Climatol. 2014, 53, 824–839. [Google Scholar] [CrossRef]
- Shimadera, H.; Kondo, A.; Shrestha, K.L.; Kitaoka, K.; Inoue, Y. Numerical Evaluation of the Impact of Urbanisation on Summertime Precipitation in Osaka, Japan. Adv. Meteorol. 2015, 2015, 1–11. [Google Scholar] [CrossRef]
- Wen, J.; Chen, J.; Lin, W.; Jiang, B.; Xu, S.; Lan, J. Impacts of Anthropogenic Heat Flux and Urban Land-Use Change on Frontal Rainfall near Coastal Regions: A Case Study of a Rainstorm over the Pearl River Delta, South China. J. Appl. Meteorol. Climatol. 2020, 59, 363–379. [Google Scholar] [CrossRef]
- Hu, C.; Fung, K.Y.; Tam, C.Y.; Wang, Z. Urbanisation Impacts on Pearl River Delta Extreme Rainfall Sensitivity to Land Cover Change Versus Anthropogenic Heat. Earth Space Sci. 2021, 8, 1–11. [Google Scholar] [CrossRef]
- Mokoena, R.; Mturi, G.; Maritz, J.; Mateyisi, M.; Klein, P. African Case Studies: Developing Pavement Temperature Maps for Performance-Graded Asphalt Bitumen Selection. Sustainability 2022, 14, 1048. [Google Scholar] [CrossRef]
- Elmarakby, E.; Khalifa, M.; Elshater, A.; Afifi, S. Tailored Methods for Mapping Urban Heat Islands in Greater Cairo Region. Ain Shams Eng. J. 2021, 13, 101545. [Google Scholar] [CrossRef]
- Mohan, M.; Singh, V.K.; Bhati, S.; Lodhi, N.; Sati, A.P.; Sahoo, N.R.; Dash, S.; Mishra, P.C.; Dey, S. Industrial Heat Island: A Case Study of Angul-Talcher Region in India. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2020, 141, 229–246. [Google Scholar] [CrossRef]
- Subramani, D.; Chandrasekar, R.; Ramanujam, K.S.; Balaji, C. A New Ensemble-Based Data Assimilation Algorithm to Improve Track Prediction of Tropical Cyclones. Nat. Hazards 2014, 71, 659–682. [Google Scholar] [CrossRef]
- Radhakrishnan, C.; Chandrasekar, V. CASA Prediction System over Dallas–Fort Worth Urban Network: Blending of Nowcasting and High-Resolution Numerical Weather Prediction Model. J. Atmospheric Ocean. Technol. 2020, 37, 211–228. [Google Scholar] [CrossRef]
- Ansari, T.U.; Ojha, N.; Chandrasekar, R.; Balaji, C.; Singh, N.; Gunthe, S.S. Competing Impact of Anthropogenic Emissions and Meteorology on the Distribution of Trace Gases Over Indian Region. J. Atmos. Chem. 2016, 73, 363–380. [Google Scholar] [CrossRef]
- Mittal, R.; Tewari, M.; Radhakrishnan, C.; Ray, P.; Singh, T.; Nickerson, A. Response of Tropical Cyclone Phailin (2013) in the Bay of Bengal to Climate Perturbations. Clim. Dyn. 2019, 53, 2013–2030. [Google Scholar] [CrossRef]
- Balaji, C.; Krishnamoorthy, C.; Chandrasekar, R. On the Possibility of Retrieving Near-Surface Rain Rate from the Microwave Sounder SAPHIR of the Megha-Tropiques Mission. Curr. Sci. 2014, 106, 587–593. [Google Scholar]
- Ramanujam, S.; Chandrasekar, R.; Chakravarthy, B. A New PCA-ANN Algorithm for Retrieval of Rainfall Structure in a Precipitating Atmosphere. Int. J. Numer. Methods Heat Fluid Flow 2011, 21, 1002–1025. [Google Scholar] [CrossRef]
- Ramanujam, S.; Radhakrishnan, C.; Subramani, D.; Chakravarthy, B. On the Effect of Non-Raining Parameters in Retrieval of Surface Rain Rate Using TRMM PR and TMI Measurements. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 735–743. [Google Scholar] [CrossRef]
- Attada, R.; Parekh, A.; Chowdary, J.S.; Gnanaseelan, C. Reanalysis of the Indian Summer Monsoon: Four Dimensional Data Assimilation of AIRS Retrievals in a Regional Data Assimilation and Modeling Framework. Clim. Dyn. 2017, 50, 2905–2923. [Google Scholar] [CrossRef]
- Dani, V.; Pal, B.K. Climate Variability and Changes in Local Climate. Weather 2018, 73, 322–331. [Google Scholar]
- Chandrasekar, R.; Balaji, C. Sensitivity of Tropical Cyclone Jal Simulations to Physics Parameterisations. J. Earth Syst. Sci. 2012, 121, 923–946. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekar, R.; Balaji, C. Impact of Physics Parameterisation and 3DVAR Data Assimilation on Prediction of Tropical Cyclones in the Bay of Bengal Region. Nat. Hazards 2016, 80, 223–247. [Google Scholar] [CrossRef]
- Kain, J.S.; Fritsch, J.M. A One-Dimensional Entraining/Detraining Plume Model and Its Application in Convective Parameterisation. J. Atmos. Sci. 1990, 47, 2784–2802. [Google Scholar] [CrossRef] [Green Version]
- Boadh, R.; Satyanarayana, A.N.V.; Krishna, T.R.; Madala, S. Sensitivity of PBL Schemes of the WRF-ARW Model in Simulating the Boundary Layer Flow Parameters for Their Application to Air Pollution Dispersion Modeling Over a Tropical Station. Atmósfera 2016, 29, 61–81. [Google Scholar] [CrossRef] [Green Version]
- Marshall, J.S. The Distribution of Raindrops with Size. J. Meteorol. 1948, 5, 165–166. [Google Scholar] [CrossRef]
- Cohard, J.M.; Pinty, J.P. A Comprehensive Two-Moment Warm Microphysical Bulk Scheme. I: Description and Tests. Q. J. R. Meteorol. Soc. 2000, 126, 1815–1842. [Google Scholar] [CrossRef]
- Mishra, P.; Kannan, S.R. A Numerical Experiment to Study the Impact of Temperature Enhancement by Anthropogenic Heating on Local Weather at the Angul Region of India. J. Earth Syst. Sci. 2022, 131, 1–16. [Google Scholar] [CrossRef]
- Koutsoyiannis, D. Clausius–Clapeyron Equation and Saturation Vapour Pressure: Simple Theory Reconciled with Practice. Eur. J. Phys. 2012, 33, 295. [Google Scholar] [CrossRef]
- Mishra, P.; Kannan, S.R. A Numerical Experiment to Study the Effect of Anthropogenic Heating on Local Weather. In Proceedings of the IEEE India Geoscience and Remote Sensing Symposium 2021, Ahmedabad, India, 6–10 December 2021. [Google Scholar]
Cumulus | |
1. Kain–Fritsch (new Eta) scheme | KF |
2. Betts–Miller–Janjic scheme | BMJ |
3. Grell–Devenyi ensemble scheme | GD |
4. New Grell scheme | GRE |
PBL | |
1. Yonsei University scheme | YSM |
2. Mellor–Yamada–Janjic (Eta) TKE scheme | MYJ |
3. Mellor–Yamada–Nakanishi–Niino 2.5 level TKE | MYNN2.5 |
4. Mellor–Yamada–Nakanishi–Niino 3 level TKE | MYNN3 |
Microphysics | |
1. Kessler scheme | KS |
2. Lin et al. scheme | LIN |
3. WRF Single Moment 3-class simple ice scheme | WSM3 |
4. WRF Single Moment 5-class scheme | WSM5 |
5. Ferrier (new Eta) microphysics | FERRIER |
6. WRF Single Moment 6-class scheme | WSM6 |
7. Morrison 2-moment scheme | MORRISON |
10. WRF Double moment, 5-class scheme | WDM5 |
11. WRF Double moment, 6-class scheme | WDM6 |
12. Thompson scheme | THOM |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mishra, P.; Kannan, S.R.; Radhakrishnan, C. The Effect of Anthropogenic Heat and Moisture on Local Weather at Industrial Heat Islands: A Numerical Experiment. Atmosphere 2022, 13, 357. https://doi.org/10.3390/atmos13020357
Mishra P, Kannan SR, Radhakrishnan C. The Effect of Anthropogenic Heat and Moisture on Local Weather at Industrial Heat Islands: A Numerical Experiment. Atmosphere. 2022; 13(2):357. https://doi.org/10.3390/atmos13020357
Chicago/Turabian StyleMishra, Parthasarathi, Srinivasa Ramanujam Kannan, and Chandrasekar Radhakrishnan. 2022. "The Effect of Anthropogenic Heat and Moisture on Local Weather at Industrial Heat Islands: A Numerical Experiment" Atmosphere 13, no. 2: 357. https://doi.org/10.3390/atmos13020357
APA StyleMishra, P., Kannan, S. R., & Radhakrishnan, C. (2022). The Effect of Anthropogenic Heat and Moisture on Local Weather at Industrial Heat Islands: A Numerical Experiment. Atmosphere, 13(2), 357. https://doi.org/10.3390/atmos13020357