ConvLSTM Network-Based Rainfall Nowcasting Method with Combined Reflectance and Radar-Retrieved Wind Field as Inputs
Abstract
:1. Introduction
2. Methods
2.1. ConvLSTM
2.2. Input Factor Selection and Data Preprocessing
3. Results
3.1. Research Region Overview and Data Set
3.2. Setup of the Experiment
3.3. Evaluation Methods
3.4. Result
3.4.1. Model Comparison
3.4.2. Comparison of Input Data
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yin, J.; Gao, Z.; Han, W. Application of a Radar Echo Extrapolation-Based Deep Learning Method in Strong Convection Nowcasting. Earth Space Sci. 2021, 8, e2020EA001621. [Google Scholar] [CrossRef]
- Heuvelink, D.; Berenguer, M.; Brauer, C.C.; Uijlenhoet, R. Hydrological application of radar rainfall nowcasting in the Netherlands. Environ. Int. 2020, 136, 105431. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Sun, J.; Zhang, W.; Xiu, Y.; Feng, H.; Lin, Y. A machine learning nowcasting method based on real-time reanalysis data. J. Geophys. Res. Atmos. 2017, 122, 4038–4051. [Google Scholar] [CrossRef]
- Zhao, K.; Huang, H.; Wang, M.; Lee, W.-C.; Chen, G.; Wen, L.; Wen, J.; Zhang, G.; Xue, M.; Yang, Z.; et al. Recent Progress in Dual-Polarization Radar Research and Applications in China. Adv. Atmos. Sci. 2019, 36, 961–974. [Google Scholar] [CrossRef]
- Alfieri, L.; Claps, P.; Laio, F. Time-dependent Z-R relationships for estimating rainfall fields from radar measurements. Nat. Hazards Earth Syst. Sci. 2010, 10, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Wong, W.; Liu, L.; Wang, H. Application of multi-scale tracking radar echoes scheme in quantitative precipitation nowcasting. Adv. Atmos. Sci. 2013, 30, 448–460. [Google Scholar] [CrossRef]
- Ayzel, G.; Heistermann, M.; Winterrath, T. Optical flow models as an open benchmark for radar-based precipitation nowcasting (rainymotion v0.1). Geosci. Model Dev. 2019, 12, 1387–1402. [Google Scholar] [CrossRef] [Green Version]
- Woo, W.-C.; Wong, W.-K. Operational Application of Optical Flow Techniques to Radar-Based Rainfall Nowcasting. Atmosphere 2017, 8, 48. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Cao, Y.; Ma, L.; Zhang, J. A Deep Learning-Based Methodology for Precipitation Nowcasting with Radar. Earth Space Sci. 2020, 7, e2019EA000812. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.; Liu, L.; Ding, Y. Improvement of radar quantitative precipitation estimation based on real-time adjustments to Z-R relationships and inverse distance weighting correction schemes. Adv. Atmos. Sci. 2012, 29, 575–584. [Google Scholar] [CrossRef]
- Shao, Y.; Fu, A.; Zhao, J.; Xu, J.; Wu, J. Improving quantitative precipitation estimates by radar-rain gauge merging and an integration algorithm in the Yishu River catchment, China. Theor. Appl. Climatol. 2021, 144, 611–623. [Google Scholar] [CrossRef]
- Lavers, D.A.; Pappenberger, F.; Zsoter, E. Extending medium-range predictability of extreme hydrological events in Europe. Nat. Commun. 2014, 5, 5382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Xu, G.-Y.; Wang, X.; Cui, C.; Wang, J.; He, D. Quantitative Analysis of Water Vapor Transport during Mei-Yu Front Rainstorm Period over the Tibetan Plateau and Yangtze-Huai River Basin. Adv. Meteorol. 2019, 2019, 6029027. [Google Scholar] [CrossRef]
- Feng, L.; Zhou, T. Water vapor transport for summer precipitation over the Tibetan Plateau: Multidata set analysis. J. Geophys. Res. Atmos. 2012, 117, D20114. [Google Scholar] [CrossRef] [Green Version]
- Lavers, D.A.; Waliser, D.E.; Ralph, F.M.; Dettinger, M.D. Predictability of horizontal water vapor transport relative to precipitation: Enhancing situational awareness for forecasting western U.S. extreme precipitation and flooding. Geophys. Res. Lett. 2016, 43, 2275–2282. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Wei, M.; Niu, B.; Pan, J.; Zhang, W.; Guo, W. Application of Multiple Wind Retrieval Algorithms in Nowcasting. Atmosphere 2015, 6, 834–849. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, M.C.V.; de Campos Velho, H.F.; Ferreira, N.J. Artificial neural network technique for rainfall forecasting applied to the São Paulo region. J. Hydrol. 2005, 301, 146–162. [Google Scholar] [CrossRef]
- Ayzel, G.; Heistermann, M.; Sorokin, A.; Nikitin, O.; Lukyanova, O. All convolutional neural networks for radar-based precipitation nowcasting. Procedia Comput. Sci. 2019, 150, 186–192. [Google Scholar] [CrossRef]
- Agrawal, S.; Barrington, L.; Bromberg, C.; Burge, J.; Gazen, C.; Hickey, J. Machine Learning for Precipitation Nowcasting from Radar Images. arXiv 2019, arXiv:1912.12132. Available online: https://ui.adsabs.harvard.edu/abs/2019arXiv191212132A (accessed on 1 December 2019).
- Reichstein, M.; Camps-Valls, G.; Stevens, B.; Jung, M.; Denzler, J.; Carvalhais, N.; Prabhat. Deep learning and process understanding for data-driven Earth system science. Nature 2019, 566, 195–204. [Google Scholar] [CrossRef] [PubMed]
- Sokol, Z.; Kitzmiller, D.; Pesice, P.; Mejsnar, J. Comparison of precipitation nowcasting by extrapolation and statistical-advection methods. Atmos. Res. 2013, 123, 17–30. [Google Scholar] [CrossRef]
- Ko, C.-M.; Jeong, Y.Y.; Lee, Y.-M.; Kim, B.-S. The Development of a Quantitative Precipitation Forecast Correction Technique Based on Machine Learning for Hydrological Applications. Atmosphere 2020, 11, 111. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Zhao, K.; Zhang, G.; Lin, Q.; Wen, L.; Chen, G.; Yang, Z.; Wang, M.; Hu, D. Quantitative Precipitation Estimation with Operational Polarimetric Radar Measurements in Southern China: A Differential Phase–Based Variational Approach. J. Atmos. Ocean. Technol. 2018, 35, 1253–1271. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.-Y.; Wong, W.-K.; Woo, W.-C. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. arXiv 2015, arXiv:1506.04214. Available online: https://ui.adsabs.harvard.edu/abs/2015arXiv150604214S (accessed on 1 June 2015).
- Ballas, N.; Yao, L.; Pal, C.; Courville, A. Delving Deeper into Convolutional Networks for Learning Video Representations. arXiv 2015, arXiv:1511.06432. Available online: https://ui.adsabs.harvard.edu/abs/2015arXiv151106432B (accessed on 1 November 2015).
- Shi, X.; Gao, Z.; Lausen, L.; Wang, H.; Yeung, D.-Y.; Wong, W.-K.; Woo, W.-C. Deep Learning for Precipitation Nowcasting: A Benchmark and A New Model. arXiv 2017, arXiv:1706.03458. Available online: https://ui.adsabs.harvard.edu/abs/2017arXiv170603458S (accessed on 1 June 2017).
- Wang, Y.; Long, M.; Wang, J.; Gao, Z.; Yu, P.S. PredRNN: Recurrent neural networks for predictive learning using spatiotemporal LSTMs. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 879–888. [Google Scholar]
- Wang, Y.; Zhang, J.; Zhu, H.; Long, M.; Wang, J.; Yu, P.S. Memory in memory: A predictive neural network for learning higher-order non-stationarity from spatiotemporal dynamics. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 16–20 June 2019; pp. 9154–9162. [Google Scholar]
- Sønderby, C.K.; Espeholt, L.; Heek, J.; Dehghani, M.; Oliver, A.; Salimans, T.; Agrawal, S.; Hickey, J.; Kalchbrenner, N. MetNet: A Neural Weather Model for Precipitation Forecasting. arXiv 2020, arXiv:2003.12140. Available online: https://ui.adsabs.harvard.edu/abs/2020arXiv200312140K (accessed on 1 March 2020).
- Ayzel, G.; Scheffer, T.; Heistermann, M. RainNet v1.0: A convolutional neural network for radar-based precipitation nowcasting. Geosci. Model Dev. 2020, 13, 2631–2644. [Google Scholar] [CrossRef]
- Pan, X.; Lu, Y.; Zhao, K.; Huang, H.; Wang, M.; Chen, H. Improving Nowcasting of Convective Development by Incorporating Polarimetric Radar Variables into a Deep-Learning Model. Geophys. Res. Lett. 2021, 48, e2021GL095302. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, L.; Wang, Z.; Pan, X.; Li, H. Towards a More Realistic and Detailed Deep-Learning-Based Radar Echo Extrapolation Method. Remote Sens. 2021, 14, 24. [Google Scholar] [CrossRef]
- Chirigati, F. Accurate short-term precipitation prediction. Nat. Comput. Sci. 2021, 1, 709. [Google Scholar] [CrossRef]
- Han, L.; Sun, J.; Zhang, W. Convolutional Neural Network for Convective Storm Nowcasting Using 3-D Doppler Weather Radar Data. IEEE Trans. Geosci. Remote Sens. 2019, 58, 1487–1495. [Google Scholar] [CrossRef]
- Franch, G.; Maggio, V.; Coviello, L.; Pendesini, M.; Jurman, G.; Furlanello, C. TAASRAD19, a high-resolution weather radar reflectivity dataset for precipitation nowcasting. Sci. Data 2020, 7, 234. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Liu, S.; Xue, M. Background error covariance functions for vector wind analyses using Doppler-radar radial-velocity observations. Q. J. R. Meteorol. Soc. 2006, 132, 2887–2904. [Google Scholar] [CrossRef]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. Available online: https://ui.adsabs.harvard.edu/abs/2014arXiv1412.6980K (accessed on 1 December 2014).
Model Scheme | Model Structure | Model Inputs |
---|---|---|
Scheme 1 | ConvLSTM 1 model | CR 2, radar-retrieved wind field |
Scheme 2 | Convolution model | CR, radar-retrieved wind field |
Scheme 3 | LSTM 3 model | CR, radar-retrieved wind field |
Scheme 4 | ConvLSTM model | CR |
Scheme 5 | ConvLSTM model | CR, radar radial velocity |
Scheme 6 | Optical flow method 4 |
Network Layer Type | Kernel Size | Network Layer Output Size | Network Layer Parameters |
---|---|---|---|
conv_lstm2d (ConvLSTM2D) | (5, 5) | (None, 4, M, N, 16) | 30,464 |
batch_normalization (BN) | Null | (None, 4, M, N, 16) | 64 |
max_pooling3d (MaxPooling3D) | Null | (None, 2, M/2, N/2, 16) | 0 |
conv_lstm2d_1 (ConvLSTM2D) | (5, 5) | (None, M/2, N/2, 16) | 51,264 |
batch_normalization_1 (BN) | Null | (None, M/2, N/2, 16) | 64 |
conv2d (Conv2D) | (3, 3) | (None, M/2, N/2, 4) | 580 |
batch_normalization_2 (BN) | Null | (None, M/2, N/2, 4) | 16 |
flatten (Flatten) | Null | (None, M * N) | 0 |
dense (Dense) | Null | (None, 1) | M * N + 1 |
Measured Value | Predicted Value | |
---|---|---|
≥k | <k | |
≥k | A (successful prediction) | C (missed prediction) |
<k | B (empty prediction) | D (invalid data) |
Model | Dianjiangtai | Shihuiyao | Linkuang | Suyukou 1 | ||||
---|---|---|---|---|---|---|---|---|
RMSE (mm) | CC | RMSE (mm) | CC | RMSE (mm) | CC | RMSE (mm) | CC | |
Scheme 1 | 1.62 | 0.848 | 0.82 | 0.842 | 0.78 | 0.837 | 1.58 | 0.965 |
Scheme 2 | 2.32 | 0.651 | 1.57 | 0.621 | 1.19 | 0.602 | 2.29 | 0.917 |
Scheme 3 | 2.79 | 0.648 | 2.42 | 0.533 | 1.33 | 0.529 | 3.89 | 0.804 |
Scheme 4 | 2.17 | 0.703 | 1.10 | 0.676 | 1.02 | 0.698 | 2.36 | 0.911 |
Scheme 5 | 1.78 | 0.840 | 0.95 | 0.805 | 0.88 | 0.807 | 2.03 | 0.932 |
Scheme 6 | 2.26 | 0.662 | 1.91 | 0.582 | 1.27 | 0.563 | 3.04 | 0.845 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Wang, Y.; Zhong, D.; Xie, S.; Xu, J. ConvLSTM Network-Based Rainfall Nowcasting Method with Combined Reflectance and Radar-Retrieved Wind Field as Inputs. Atmosphere 2022, 13, 411. https://doi.org/10.3390/atmos13030411
Liu W, Wang Y, Zhong D, Xie S, Xu J. ConvLSTM Network-Based Rainfall Nowcasting Method with Combined Reflectance and Radar-Retrieved Wind Field as Inputs. Atmosphere. 2022; 13(3):411. https://doi.org/10.3390/atmos13030411
Chicago/Turabian StyleLiu, Wan, Yongqiang Wang, Deyu Zhong, Shuai Xie, and Jijun Xu. 2022. "ConvLSTM Network-Based Rainfall Nowcasting Method with Combined Reflectance and Radar-Retrieved Wind Field as Inputs" Atmosphere 13, no. 3: 411. https://doi.org/10.3390/atmos13030411
APA StyleLiu, W., Wang, Y., Zhong, D., Xie, S., & Xu, J. (2022). ConvLSTM Network-Based Rainfall Nowcasting Method with Combined Reflectance and Radar-Retrieved Wind Field as Inputs. Atmosphere, 13(3), 411. https://doi.org/10.3390/atmos13030411